A Cross Domain Multi-modal Dataset for Robust Face Anti-spoofing

Qiaobin Ji[†], Shugong Xu[†], Xudong Chen[†], Shunqing Zhang[†], Shan Cao[†]

[†] Shanghai Institute for Advanced Communication and Data Science,

Shanghai University, Shanghai, 200444, China

Email: {qiaobin, shugong, xudongchen, shunqing, cshan}@shu.edu.cn

Speaker: Xudong Chen

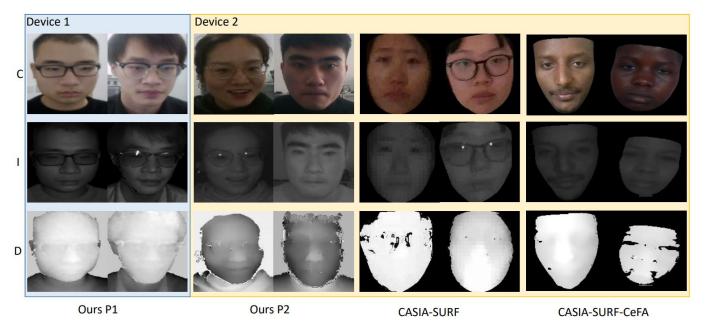
Problems

- 1. Multi-modal FAS datasets rarely pay attention to the cross domain problems.
- Previous multi-modal dataset preprocessing method requires a lot of computing resources and causes the grid effect and depth holes.

Contribution

- A cross-device face anti-spoofing dataset is proposed.
- 2. Two depth map preprocessing and normalization methods are proposed.
- A novel unified multi-head end-to-end convolutional neural network architecture for face anti-spoofing is proposed.

Dataset



- The dataset has 4 human species, 4 attack types, and the age range is from 20s -50s, two different depth sensor principle multi-modal cameras are included.
- 2. Our preprocessing only uses the face detector. It can recover the grid effect and noise caused holes, and can keep more details in the quantification process.

Model

A combination of position-wise attention and residual block is used.

Loss function

$$L_{s} = -\sum_{i=1}^{m} log \frac{e^{W_{i}^{T}xi + b_{y_{i}}}}{\sum_{i=1}^{n} e^{W_{i}^{T}xi + b_{j}}},$$
 (1)

$$L_c = \frac{1}{2} \sum_{i=1}^{m} \|x_i - c_{y_i}\|_2^2,$$
 (2)

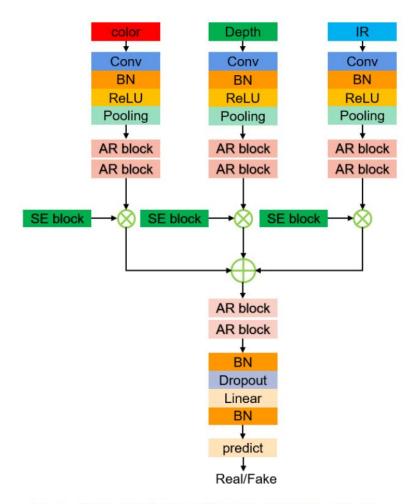


Fig. 4. Attention based anti-spoofing network(AASN) architecture

Experiments

TABLE III
PERFORMANCE OF AASN ON GREAT-FASD'S THREE DIFFERENT PROTOCOLS.

Method	simple	medium	hard 67.17%	
Res18-SE [28]	98.08%	93.23%		
Res18 [28]	97.75%	91.92%	63.41%	
FaceBagNet [21]	98.00%	94.31%	67.02%	
VisionLabs [17]	98.69%	95.56%	69.13%	
ours	98.06%	98.39%	72.50%	

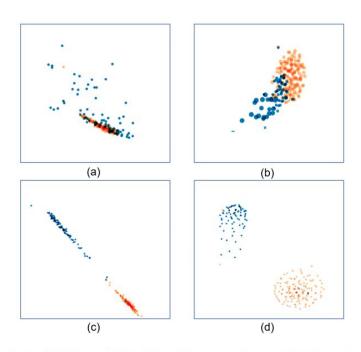


Fig. 6. The 2D visualization of spoof faces and real faces on baseline model and ours AASN. The first row is dimension-reduced 2D face features extracted by baseline and second row is extracted by AASN. The first column and second column is dimension-reduced by PCA and t-SNE [14] respectively. Please zoom in to check details. Best viewed in color.

Experiments

Model	attenion	shifting	center loss	accuracy	BPCER	APCER	ACER
baseline [28]				93.23%	0.0102	0.1297	0.0699
+a	✓			96.15%	0.0014	0.0765	0.0389
+a+msa	✓	✓		97.04%	0.0192	0.0547	0.0369
+a+c	√		✓	97.35%	0.0089	0.0157	0.0124
Ours	✓	√	✓	98.39%	0.0062	0.0024	0.0043

TABLE II

PERFORMANCE OF THE BASELINE MODEL TRAINED WITH AND WITHOUT ATTENTION RESIDUAL BLOCK, CENTER LOSS AND MODAL SHIFTING DATA AUGMENTATION ON THE GREAT-FASD DATASET UNDER MEDIUM PROTOCOL. "A" DENOTES ATTENTION, "C" DENOTES CENTER LOSS EQ(2), AND "MSA" MEANS MODAL SHIFTING AUGMENTATION.

During the training process, there is a 20% probability that two pictures of the same modality in the minibatch will be randomly exchanged.

