

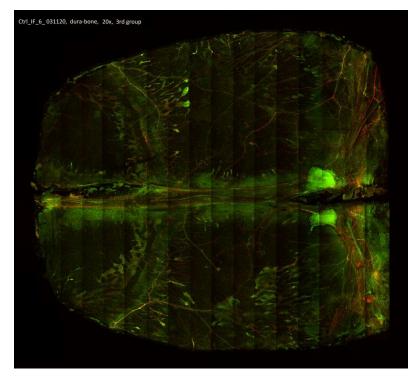
Multi-focus Image Fusion for Confocal Microscopy using U-Net Regression Map

Md Maruf Hossain Shuvo, Yasmin M. Kassim, Filiz Bunyak, Olga V. Glinskii, Leike Xie, Vladislav V. Glinsky, Virginia H. Huxley, Mahesh M. Thakkar, and Kannappan Palaniappan

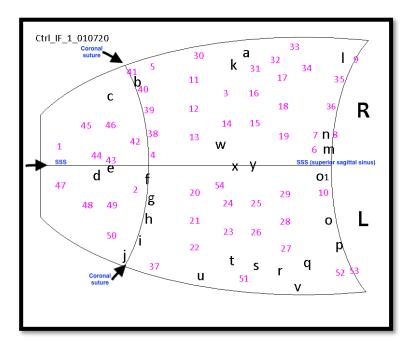
Outline

- Introduction
 - Microscopy Imaging of Dura Mater
 - Challenges of Multi-focus Image Fusion
 - Related Works
- Objectives
- Materials and Methods
 - Multiscale Hessian Fusion
 - Proposed Architecture
 - Quality Metrices
- Experimental Results
 - Data Collection
 - Experimental Results
- Conclusions

Dura Mater Brain Tissue

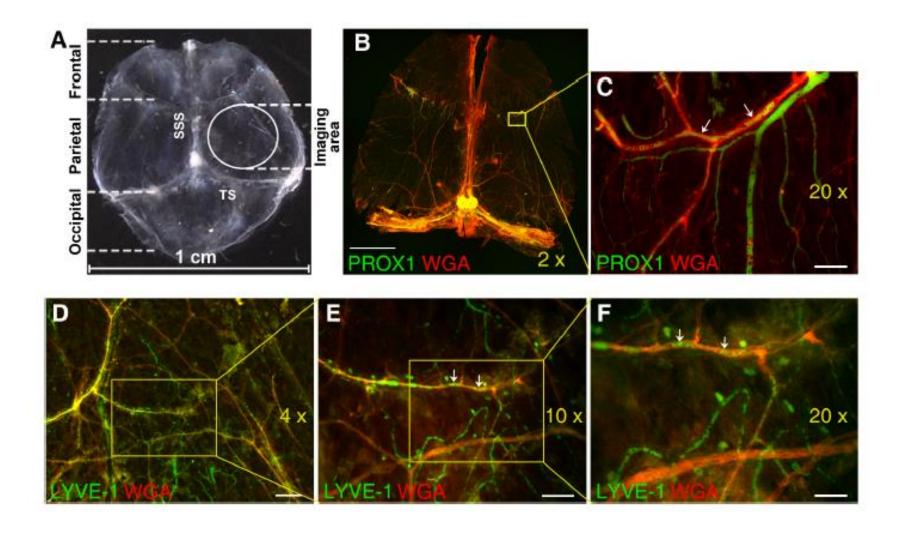


Female 6 week (tissue cut in middle)



Scattered sampling

Dura Mater Brain Tissue

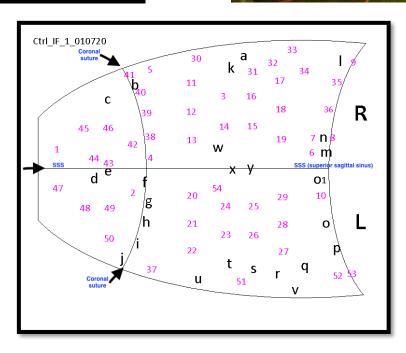


Microscopy Imaging of Dura Mater

Single Focus Images

28 56 84 112 140

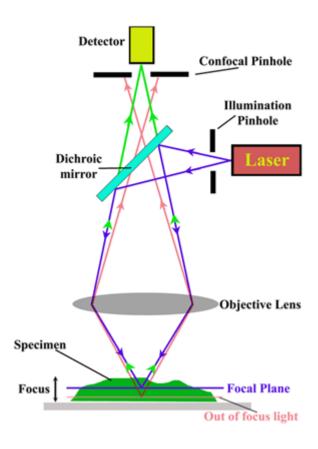
- Confocal microscopy image stack goes from Bone (first slice) towards Dura (last slice)
- 20X, 80 stacks [numbers & letters], 512 x 512, 100 to 500 slices
- 20X, One stack (200 slices) and two channels takes 25 minutes
- Staining: vessel red (594nm), lymphatics green (488nm) and combined channels
- Sampling resolution, 20X/0.45: 1 or 7 micron in z, 0.672 x 0.672 resolution in x and y; for oil lens 60X (0.212 x 0.212 x 0.896 micron)
- 56GB of storage for one tissue sample, scattered stacks takes 2 weeks
- Grid sampling takes 1 month (Ctrl_6, 20X, 224 stacks, 180GB = 60GB raw+ 120GB TIFF)
- Green fluorescence channel images lymphatics structures: sinusoids either pure (no blood vessels) or has one blood vessel or multi blood vessels
- To reveal details of these complex anatomy, multi-focus fusion is important



Max Intensity Projection

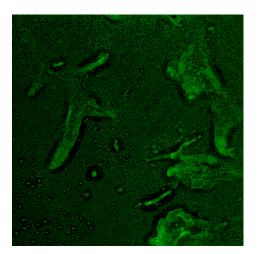
Motivation and Objectives

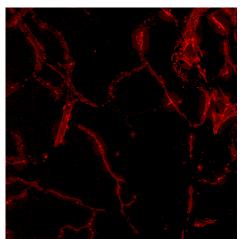
- Confocal microscope is often used to image the dura mater tissues.
- Each single focus image captures details of specimen regions that lie close to its focal plane, remaining regions imaged with poor contrast.
- Multi-focus image fusion aims to create a single sharp and detailed composite image that captures the essential 3D structure information in a set of single focus images
- Fusion is necessary to characterize spatial relationship between dura mater blood vessel and lymphatic vascular structures
- To overcome the limitations of derivative based fusion methods

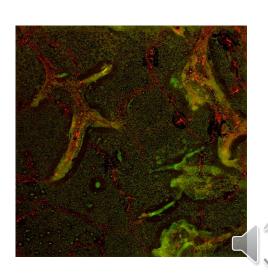


Challenges of Multi-focus Image Fusion

- Multi-focus image fusion to capture the highly complex structures of the blood and lymphatic microvasculature is challenging due to
 - Contrast level variation caused by lectin stain diffusion
 - High variance in vessel intensity
 - Fine microvascular structures
 - Leakage of stain from vessels
 - Variable depth of focus, and
 - Complex 3D structure







Related Work

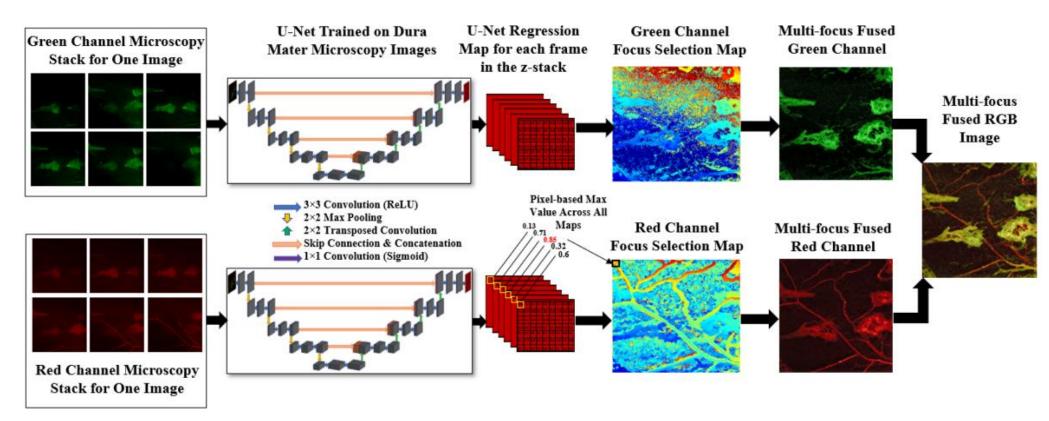
- Existing approaches can be broadly categorized as:
 - (i) Transform domain-based,
 - (ii) Spatial domain-based, and
 - (iii) Neural networks-based
- Transform domain approaches first transform source images into a desired domain, then fuse transform coefficients, and finally apply inverse transform to obtain fused image [3]
- Spatial domain approaches rely on focus measures based on first and second order image derivatives such as energy of gradients, sum of modified Laplacian, energy of Laplacian[5]
- These focus measures highly depend on block sizes and perform poorly at object boundaries
- The neural network-based fusion approaches exploit learned, data-driven features to produce fusion results, that often lead to reduced fusion artifacts[6]
- Our approach relies on a novel vesselness likelihood index computed using a U-Net convolutional neural network trained to segment vascular networks in microscopy images.

^[3] Y. Li, Y. Sun, X. Huang, G. Qi, M. Zheng, and Z. Zhu, "An image fusion method based on sparse representation and sum modified-laplacian in nsct domain," Entropy, vol. 20, no. 7, pp. 522, 2018.

^[5] J. J. Lewis, R. J. OCallaghan, S. G. Nikolov, D. R. Bull, and N. Canagarajah, "Pixel- and region-based image fusion with complex wavelets," Information Fusion, vol. 8, no. 2, pp. 119–130, 2007.

^[6] Y. Liu, X. Chen, H. Peng, and Z. Wang, "Multi-focus image fusion with a deep convolutional neural network," Information Fusion, vol. 36, pp. 191–207, 2017.

Proposed Architecture: DUAL U-Net Streams



- U-Net applied independently to each channel of multi-focus images in confocal microscopy Z-stack to produce set of vesselness likelihood maps
- Composite fused image constructed by selecting focus layer for each pixel with maximum vesselness likelihood value.

Quality Metrics

- PIQE: Perception based Image Quality Evaluator [19]
 - A low score value indicates high perceptual quality and high score value indicates low perceptual quality.
 - Calculate Mean Subtracted Contrast Normalized (MSCN) coefficient.
 - Then divide image into nonoverlapping blocks and identify distorted and non distorted blocks using MSCN.
 - PIQE score is mean of scores in distorted blocks.
- NIQE: Naturalness Image Quality Evaluator [20]
 - Quality is expressed as distance between a multivariate Gaussian (MVG) fit of Natural Scene Statistics (NSS) features extracted from test image, and MVG model of quality aware features extracted from set of natural images
 - Lower values of score reflect better perceptual quality
- BRISQE: Blind/Referenceless Image Spatial Quality Evaluator[21]
 - Predicts BRISQUE score by using a support vector regression (SVR) model trained on an image database containing compression artifacts, blurring, and noise
- SSIM: Structural Similarity Index (SSIM) [22]
 - Quality assessment index based on computation of three terms: luminance, contrast, and structure

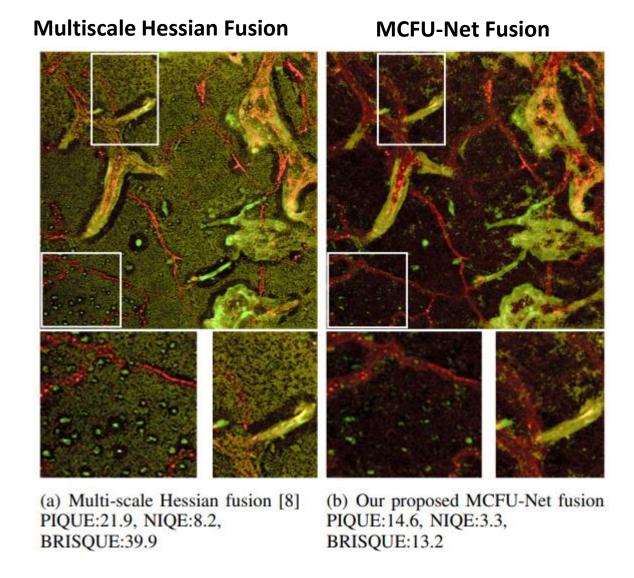
[19] N. Venkatanath, D. Praneeth, Bh. M. Chandrasekhar, S. S. Channappayya, and S. S. Medasani. "Blind Image Quality Evaluation Using Perception Based Features", In *Proceedings of the 21st National Conference on Communications (NCC).* Piscataway, NJ: IEEE, 2015.

[20] Mittal, A., R. Soundararajan, and A. C. Bovik. "Making a Completely Blind Image Quality Analyzer." *IEEE Signal Processing Letters*. Vol. 22, Number 3, March 2013, pp. 209–212 [21] Mittal, A., A. K. Moorthy, and A. C. Bovik. "No-Reference Image Quality Assessment in the Spatial Domain." *IEEE Transactions on Image Processing*. Vol. 21, Number 12, December 2012, pp. 4695–4708.

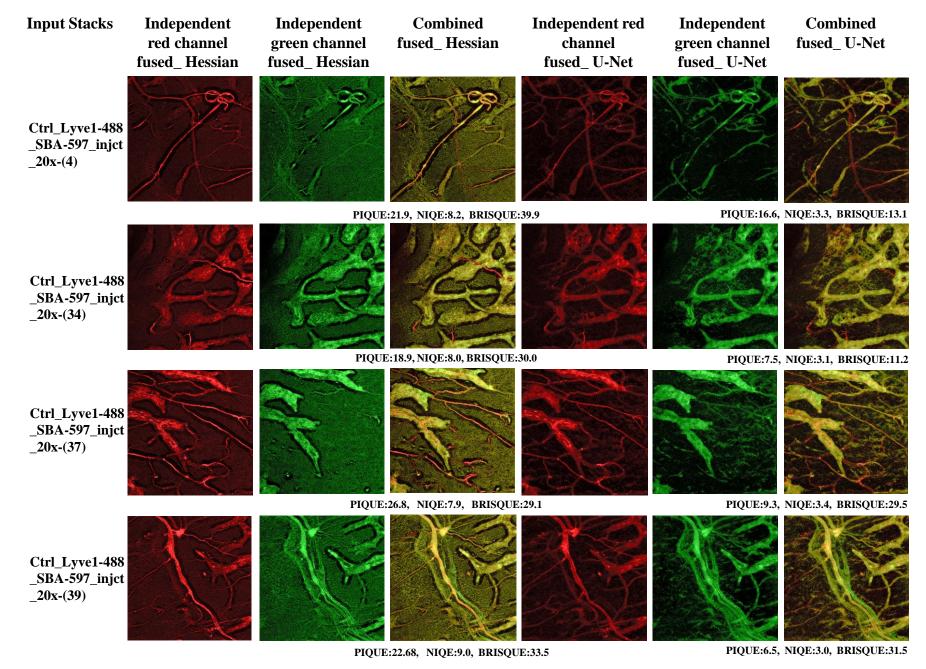
[22] Zhou, W., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. "Image Qualifty Assessment: From Error Visibility to Structural Similarity." IEEE Transactions on Image Processing. Vol. 13, Issue 4, April 2004, pp. 600–612

Experimental Results

- Visibility and shape of microvascular structures significantly improved and revealed
- Noisy background problem and scattered disconnected component problem of multi scale Hessian fusion have been addressed



Experimental Results



Quantitative Comparison

- Quality metrices for fifteen Z-stacks from different parts of whole dura mater
- Average SSIM score of 0.75, indicating structural differences between two fusion.
- For each quality metrics our MCFU-Net fusion resulted in lower scores, indicating better image quality
- PIQUE score within range of 0 to 20, image perceptual quality marked as 'Excellent'
- Proposed MCFU-Net fusion for all experiments fell in the 'Excellent' category

TABLE I: Performance comparison of quality of multi-focus image fusion

Input Stacks	PIQUE		NIQE		BRISQUE		SSIM
	Multi-scale Hessian Fusion	Proposed MCFU-Net Fusion	Multi-scale Hessian Fusion	Proposed MCFU-Net Fusion	Multi-scale Hessian Fusion	Proposed MCFU-Net Fusion	SSIM
Ctrl_Lyve1-(2) No. of slices: 157	21.97	14.64	8.20	3.31	39.96	13.16	0.75
Ctrl_Lyve1-(4) No. of slices: 221	26.00	16.06	8.64	4.13	39.60	29.99	0.69
Ctrl_Lyve1-(7) No. of slices: 234	22.04	14.92	8.06	4.55	34.70	29.82	0.74
Ctrl_Lyve1-(16) No. of slices: 140	25.13	10.45	8.63	3.38	41.06	20.55	0.75
Ctrl_Lyve1-(17) No. of slices: 164	22.29	6.94	8.49	3.25	33.56	14.89	0.77
Ctrl_Lyve1-(18) No. of slices: 143	23.07	10.41	9.88	3.49	31.46	19.54	0.77
Ctrl_Lyve1-(27) No. of slices: 130	26.89	7.61	9.58	3.34	41.39	24.73	0.70
Ctrl_Lyve1-(34) No. of slices: 264	18.92	7.58	8.01	3.15	30.06	11.21	0.80
Ctrl_Lyve1-(37) No. of slices: 267	26.83	9.33	7.96	3.4	29.19	29.51	0.73
Ctrl_Lyve1-(39) No. of slices: 185	22.68	6.58	9.02	3.03	33.55	31.53	0.74
Ctrl_Lyve1-(46) No. of slices: 138	26.77	10.83	8.55	3.18	43.11	12.87	0.73
Ctrl_Lyve1-(51) No. of slices: 257	20.04	5.42	7.98	3.59	22.27	25.11	0.80
Ctrl_Lyve1-q No. of slices: 241	22.96	14.96	8.40	3.72	31.04	17.1801	0.75
Ctrl_Lyve1-u No. of slices: 264	25.90	6.47	8.48	3.41	35.26	29.22	0.73
Ctrl_Lyve1-v No. of slices: 229	18.30	7.35	8.41	3.62	28.51	18.32	0.79
Average Scores	23.32	9.97	8.55	3.50	34.31	21.84	0.75

Conclusions

- Presented a new approach for multi-focus image fusion of confocal microscopy images that includes extremely complex structures of blood vessels, and lymphatics like structure
- Classical derivative-based methods, such as multi-scale Hessian based image fusion, fail to capture the structural complexities of these images, particularly for the green channel corresponding to lymphatics like structures
- Our proposed solution, MCFU-Net, relies on a novel vesselness likelihood index computed using a U-Net convolutional neural network trained to segment vascular structures in microscopy images
- The learned and data-driven nature of the MCFU-Net fusion approach allows us to better capture the complexities of microvascular structures, and other staining and imaging characteristics
- Future work is to do multi-class segmentation using the fused images to identify blood vessels and lymphatic like structures

