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TextVQA Problem

 Environmental images contain rich textual contents. 

 VizWiz study shows that up to 21% of question asked by visually-impaired people 

are related to the text in the environmental images. 

 Current VQA models are incapable of reading and then reasoning about text. 
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Q: What direction is shown?

A: west 

Q: What is the score of the game?

A:  39-17

Q: What is the word above “music” on 

the top right corner?

A:  activities
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The Proposed Method

 Fuse question-image and question-OCR pairs by multi-modal high-order modules 

and attention mechanism to get the answer embedding. 

* Z. Yu, J. Yu, C. Xiang, J. Fan, and D. Tao, “Beyond bilinear: Generalized multimodal factorized high-order pooling for visual question answering,” IEEE Transactions on Neural Networks and Learning 

Systems, 2018.

M=100, N=50; WE: word embedding;
 Google BERT, 768d (BERT-Base, Uncased, 12-layer, 768-hidden, 12-heads)

 0 initialization for blank OCR box

 PCA - 300d

MFH: MFH module 

Black solid circle: hyperbolic tangent



The Proposed Method 

 Answer Prediction

 We use semantic word vectors to represent each answer, instead of one-hot vectors. 

 We map the fused text-question feature and image-question feature into the word embedding 

space, where we select the nearest answers as the prediction. 
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Experimental Results

 TextVQA dataset: 

 It includes 28,408 images coming from Open Images and 45,336 text-related questions.

 It also provides OCR information of each image recognized by Rosetta system.  

Table 1. Ablation studies on TextVQA validation set. I, Q, O 

denotes image, question and OCR respectively. 

 BERT embeddings is slightly better than GloVe

embeddings. 

 Visual content and textual content provide 

complementary information for question 

anwering.

 OCR tokens are of high importance for answer 

prediction
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Experimental Results

 We achieve the highest 31.44% with 11 models. 

 There is still a significant performance gap 

between our method and humans. 

Table II. Performance comparison with other models. 



END
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Thanks for your time!


