

ICPR-2020 T3.6: Computer Vision, Robotics and Intelligent Systems Dual Path Multi-Modal High-Order Features for Textual Content based Visual Question Answering

> Yanan Li, Yuetan Lin, Hongrui Zhao, Donghui Wang Institute of Artificial Intelligence, Zhejiang Lab Tencent Youtu Lab Institute of Artificial Intelligence, Zhejiang University

> > Virtual, 1/15, 2021

TextVQA Problem

- Environmental images contain rich textual contents.
- VizWiz study shows that up to 21% of question asked by visually-impaired people are related to the text in the environmental images.
- Current VQA models are incapable of reading and then reasoning about text.

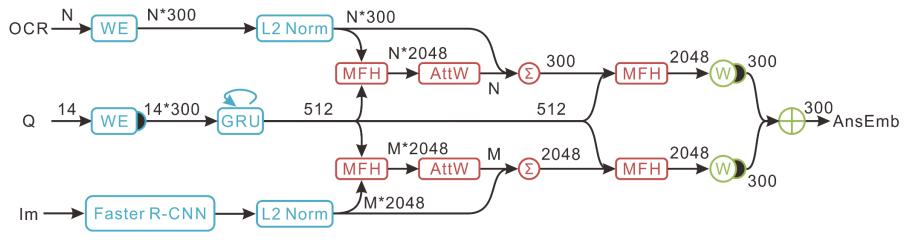
Q: What direction is shown? A: west

Q: What is the score of the game? A: 39-17

Q: What is the word above "music" on the top right corner?A: activities

The Proposed Method

Fuse question-image and question-OCR pairs by multi-modal high-order modules and attention mechanism to get the answer embedding.



Feature Encoding Part Attention and Feature Fusion Part Answer Embedding Part

M=100, N=50; WE: word embedding;

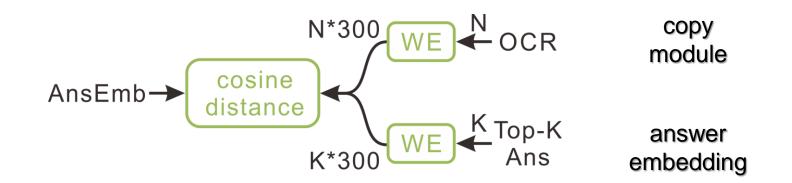
- Google BERT, 768d (BERT-Base, Uncased, 12-layer, 768-hidden, 12-heads)
- 0 initialization for blank OCR box
- PCA 300d

MFH: MFH module

Black solid circle: hyperbolic tangent

* Z. Yu, J. Yu, C. Xiang, J. Fan, and D. Tao, "Beyond bilinear: Generalized multimodal factorized high-order pooling for visual question answering," IEEE Transactions on Neural Networks and Learning Systems, 2018.

The Proposed Method



Answer Prediction

□ We use semantic word vectors to represent each answer, instead of one-hot vectors.

We map the fused text-question feature and image-question feature into the word embedding space, where we select the nearest answers as the prediction.

$$y = \arg\max_{i} s(\tilde{a}, a_i), i \in \{1, \dots, K+N\}$$

Experimental Results

- TextVQA dataset:
 - ➢ It includes 28,408 images coming from Open Images and 45,336 text-related questions.
 - > It also provides OCR information of each image recognized by Rosetta system.

Table 1. Ablation studies on TextVQA validation set. I, Q, O denotes image, question and OCR respectively.

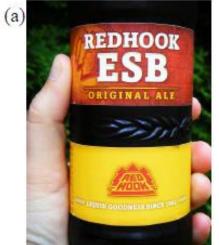
Model	Ours	LoRRA
I+Q	15.14%	13.04%
I+Q(g)+O(g)	21.43%	18.35%
I+Q(g)+O(b)	21.65%	18.35%
I+Q(b)+O(b)	22.10%	18.35%
AnsEmb	24.39%	18.35%
OCR ans only	26.87 %	20.06%
AnsEmb+OCR	28.96%	26.56%
ensemble11	31.18%	-
ensemble16	31.48%	-
ensemble23	31.50%	-

- BERT embeddings is slightly better than GloVe embeddings.
- Visual content and textual content provide complementary information for question anwering.
- OCR tokens are of high importance for answer prediction

Experimental Results

Model	val	test
Question Only Baseline	8.09%	8.70%
Image Only Baseline	6.29%	5.88%
Pythia Baseline	13.04%	14.0%
Pythia + LoRRA	26.56%	27.63%
Schwail	-	30.54%
Human	85.01%	86.79%
Ours	31.50%	31.44%

- ➤ We achieve the highest 31.44% with 11 models.
- There is still a significant performance gap between our method and humans.



Q: what type of drink is this? O: [redhook, esb, original, ale, red, hook, liquid, goodness, since, 1982] A: ale P: ale

Q: what does the last word on the label say? O: [bambergs, spezto, heller, bamberg] A: bamberg P: bemberg

Thanks for your time!

