

Nonlinear Ranking Loss on Riemannian Potato Embedding

Byung Hyung Kim (KAIST)

Yoon-Je Suh (KAIST)

Honggu Lee (Looxid Labs)

Sungho Jo (KAIST)

Introduction

• Goal : Aims to pull positive points closer than the potato-shaped region of acceptability (*z*-score) and push negative points out of the boundary.

Contribution

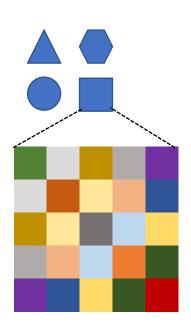
- We propose a new ranking loss to learn discriminative embeddings on non-Euclidean spaces exploiting the structure of non-linear embedding spaces.
- We achieve new state-of-the-art performance on three popular benchmarks, reducing the intra-class distances and enlarging the inter-class distances for the learned features.

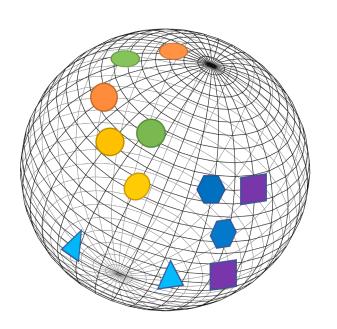
Background

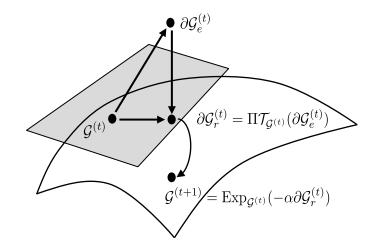
Covariance matrix representation

Riemannian Geometry over a SPD manifold

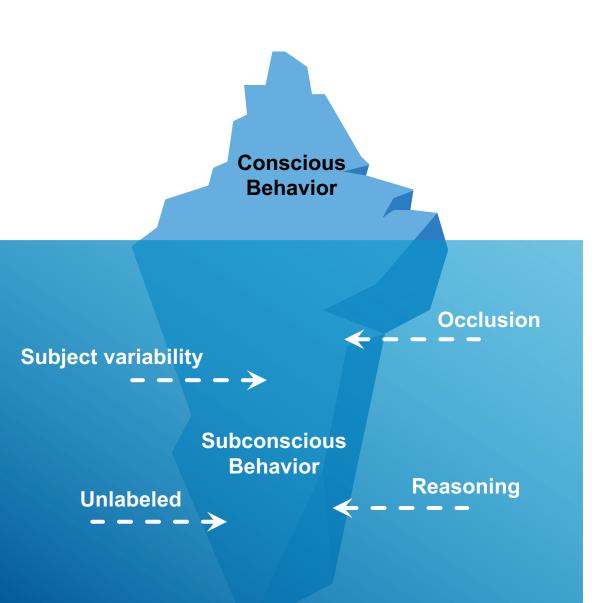
Tangent Approximation

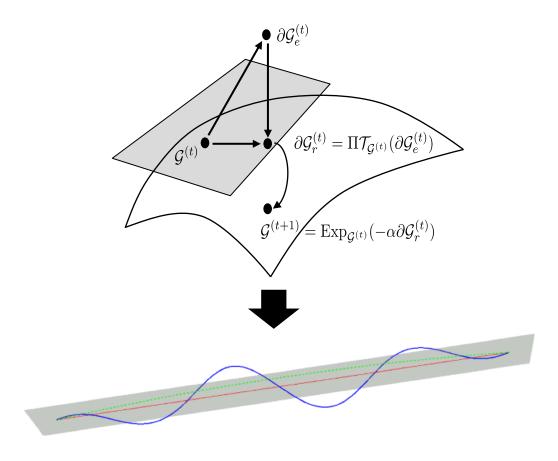






Background



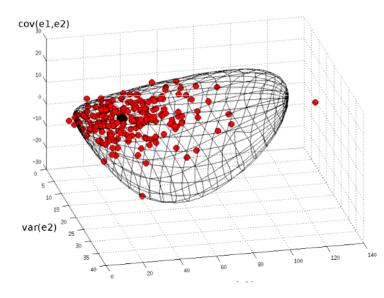


$$L(X,y) = \frac{1}{\mathcal{T}} \sum_{(i,j,k)\in\mathcal{T}} [d_{(i,j)}^2 - d_{(i,k)}^2 + \alpha]_+$$

Background

Motivation

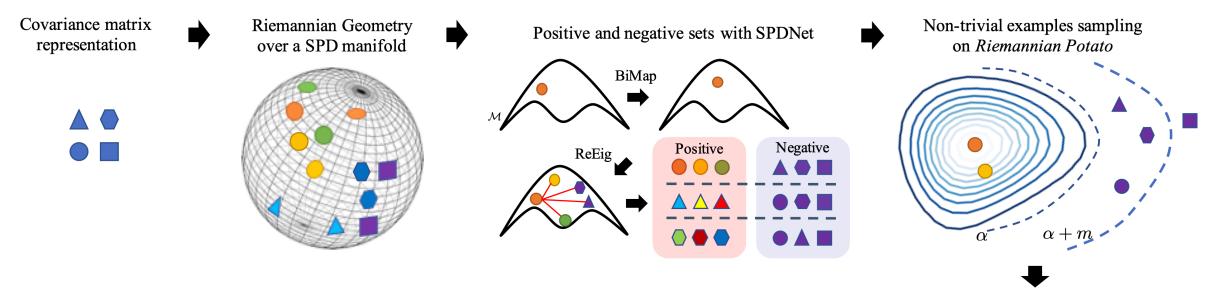
• Riemannian Potato: Provides a measure of dispersion using the distribution of distances between covariance matrices and a reference matrix and rejects epochs whose covariance matrices lie out of a region of acceptability defined by a *z*-score threshold.



$$z_t = rac{\log(d_t/\mu_t)}{\log(\sigma_t)} \quad d_t = \delta_R(\Sigma_t, ar{\Sigma}_{t-1})$$
 $ar{\Sigma} = rg \min_{\Sigma \in \mathcal{M}} \sum_{i=1}^{N_I} \delta_R^2(\Sigma_i, \Sigma)$
 $\mu_t = \exp(rac{1}{t} \sum_{i=1}^t \log(d_i)),$
 $\sigma_t = \exp(\sqrt{rac{1}{t} \sum_{i=1}^t (\log(d_i/\mu_i))^2}$

Methodology

- Riemannian Potato-based Ranking Loss (RPL)
 - A rank-based metric learning method for learning discriminative embeddings

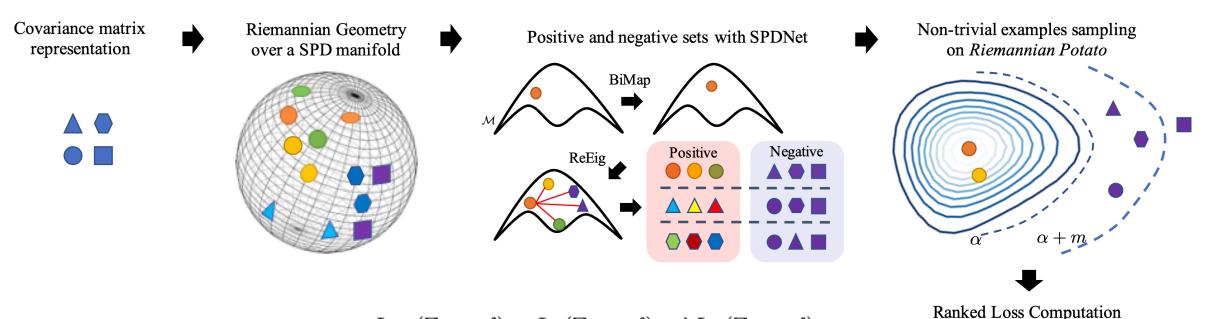


Ranked Loss Computation

$$\mathcal{P}_{i}^{c} = \{\forall \Sigma_{j} | j \neq i \land c = y_{i} = y_{j} \} \quad \hat{\mathcal{P}}_{i}^{c} = \{\forall \Sigma_{j} | j \neq i \land c = y_{i} = y_{j}, z_{j}^{c} > z_{th} \} \quad L(\Sigma_{i}, \Sigma_{j}, y_{i}; f) = (1 - y_{ij})[z_{th} - z_{j}^{c})] \\
\mathcal{N}_{i}^{c} = \{\forall \Sigma_{j} | c = y_{i}, y_{i} \neq y_{j} \} \quad \hat{\mathcal{N}}_{i}^{c} = \{\forall \Sigma_{j} | c = y_{i}, y_{i} \neq y_{j}, z_{j}^{c} < z_{th} + m \} \\
+ y_{ij}[z_{j}^{c} - (z_{th} + m)]_{+}, \quad (z_{i}^{c} - z_{i}^{c}) \} \quad \hat{\mathcal{N}}_{i}^{c} = \{\forall \Sigma_{j} | c = y_{i}, y_{i} \neq y_{j}, z_{j}^{c} < z_{th} + m \}$$

Methodology

- Riemannian Potato-based Ranking Loss (RPL)
 - A rank-based metric learning method for learning discriminative embeddings



$$L_{RP}(\Sigma_i, y_i; f) = L_P(\Sigma_i, y_i; f) + \lambda L_N(\Sigma_i, y_i; f)$$

$$L_P(\Sigma_i, y_i; f) = \frac{1}{|\hat{\mathcal{P}}_i^c|} \sum_{\Sigma_j \in \hat{\mathcal{P}}_i^c} L(\Sigma_i, \Sigma_j, y_i; f) \qquad L_N(\Sigma_i, y_i; f) = \frac{1}{|\hat{\mathcal{N}}_i^c|} \sum_{\Sigma_i \in \hat{\mathcal{N}}_i^c} L(\Sigma_i, \Sigma_j, y_i; f)$$

Results

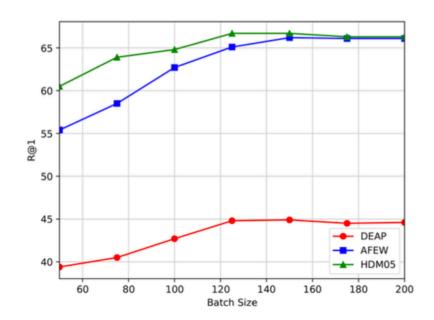
• Public Datasets

• Emotion Recognition (DEAP, AFEW), Skeleton-based Human Action Recognition (HDM05)

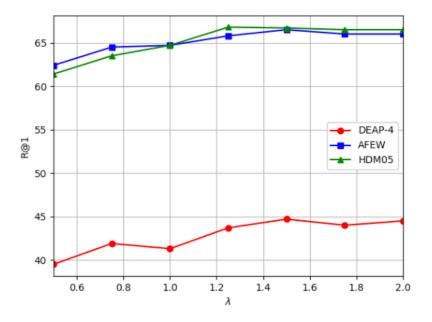
Method	DEAP-4				AFEW				HDM05			
	F1	R@1	R@3	NMI	F1	R@1	R@3	NMI	F1	R@1	R@3	NMI
DSML-Triplet	38.7	35.5	37.8	36.1	59.3	61.3	64.2	61.9	53	57.3	58.5	52.4
Triplet-Random	33.5	31.4	32.5	28.7	55.8	55.1	55.4	57.4	48.3	44.5	47.5	45.6
Triplet-Semihard	35.5	30.1	31.4	27.3	57.4	54.4	60.5	58	51.3	50.4	55.3	47.5
Lifted Struct	35.3	35.2	35.8	33.4	62.5	65.4	68.4	69.4	55.5	59.3	59.2	53.4
N-pair-mc	41.5	38.4	39.5	34.8	66.4	63.5	66.4	65.1	59.8	60	61	59.4
Proxy NCA	39.8	41.3	41.4	38.1	66.5	64.2	66	66.3	59	63.3	64.5	62
NRA	42.2	44.4	46.2	37.2	67.2	66.5	68.6	66.8	59.2	64.3	65.2	64.1
RPL	43.3	44.7	46.2	37.5	67.4	66.5	69.4	66.4	59.4	66.7	68.8	65.4

Results

- The effect of RPL
 - Batch size, Parameter λ



Recall@1 results of different batch size on the three datasets (DEAP, AFEW, and HDM05).



Recall@1 results of different λ on the three datasets (DEAP, AFEW, and HDM05).

Conclusion

- A rank-based metric learning method for learning discriminative embeddings
 - Given a query covariance matrix, our RPL splits its positive and negative sets and forces a margin between them on a SPD manifold.
 - Non-trivial samples mining and negative examples weighting are exploited to make better use of all informative data points.
 - The proposed method achieves state-of-the-art performance, reducing the intra-class distances and enlarging the inter-class distances for learned features.
- Our next work will study the non-stationary nature of brain activity as revealed by EEG
 - subject to noises from various artifacts, low signal-to-noise ratio (SNR) of sensors, and inter- and intra- subject variability.

Thank you

