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Introduction

We proposed a three-stream multi-scale attentive network (TSMSAN)
a) On the one hand, the respective

motion features, spatial features, as
well as the scene features can

for saliency detection in dynamic scenes.

TSMSAN integrates motion vector (MV) representation, static
saliency map, and RGB information in multi-scales together into one
framework on the basis of Fully Convolutional Network (FCN) and
spatial attention mechanism.

provide abundant information for
video saliency detection.
b) On the other hand, spatial attention
TS-MSAN for VSD mechanism can combine features

j with multi-scales to focus on key

information in dynamic scenes.
Three II])‘LITS Three-Streams FCNs Attention & LSTM  Saliency Map
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Methods--Architecture
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Architecture of the proposed TSMSAN. Three Multi-Level FCNs extract the features from three inputs. A Multi-Scale
Attention module with dilated convolution is implemented in the frame stream. A spatial attention module and a convLSTM
follow the output features from the three streams to further encode the spatiotemporal features.
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Method--Attention Modules

’{? Comv+pooling a) A Multi-Scale Attention module based on spatial
— concat ’

o Atteation map attention mechanism and dilated convolution
ﬁzzz ‘ﬁ} freon featuee combining features with multi-scales is adopted in the

foput feature) g -4 Output feature stream that takes RGB frames as input.
_ ’4% b) The spatial attention module follows the concatenated

feature from the three streams. It outputs an attention

| map after further spatial feature extraction. Afterwards,
Cony + pooling # R the attention feature and the input feature are

y | concatenated as the final output feature to retain the
Input feature | ttention map  Attention feature less important information.
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Results of three inputs

Frame GT OnzlnalM\ Processed MV  Static map

The preprocessed MV representation
shows more explicit motion information.
The static saliency map obtained can
roughly grasp the object in the scene,
but it has little reflection of motion
information.

Fig. 5. Samples of three inputs in TSMSAN
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Results on saliency metrics

TABLE 11
TABLE I RESULTS ON UCF-SPORTS USING DIFFERENT TRAINING SETS
COMPARISON WITH STATE-OF-THE-ARTS
Training set Method | NSST cCct SIMT
Testing set Method ‘ NSST CcCt SIMT
OMCNN || 2.089 0.405 0.321
LEDOV
2.089 0.405 0.321 TSMSAN 2.347 0.454 0.334
) 1.753 0.343 0.264
UCHE-sports 3200 0603 0.496 DHFIK Aenre A PO
3.589 0.616 0.490 — ] ]
, ACLNet 3200 0.603  0.496
2313 0446 0356 UCkF-sports TSMSAN 3580 0.616  0.490
Hollywood-2 1.748 0.382 0.276
3.049 0609 0519 ACLNet [23] 2186 0452 0364
Hollywood-2
TSMSAN 3.150 0.584 0.502 TSMSAN 2.577 0.465 0.395
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Performance comparison
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