

Image Inpainting with Contrastive Relation Network Xiaoqiang Zhou¹, Junjie Li¹, Zilei Wang^{1*}, Ran He^{2,3}, Tieniu Tan^{2,3}

¹University of Science and Technology of China ²Center for Research on Intelligent Perception and Computing, CASIA ³School of Artificial Intelligence, University of Chinese Academy of Sciences

Introduction

• Definition

filling missing regions of an image with plausible contents

Learning Pyramid-Context Encoder Network for High-Quality Image Inpainting, CVPR 2019

Introduction

Definition

filling missing regions of an image with plausible contents

- Challenge
 - diverse scenes, arbitrary corrupted regions

Introduction

Definition

filling missing regions of an image with plausible contents

- Challenge
 - diverse scenes, arbitrary corrupted regions
- Application
 - image restoration, object removal, privacy protection, entertainment

Related Work

• Diffusion-based or patch-based methods

- [1]: Image inpainting, 2000
- [2]: Patchmatch: A randomized correspondence algorithm for structural image editing, 2009

Related Work

- Diffusion-based or patch-based methods
- Deep learning related methods

[3]: Context encoders: Feature learning by inpainting, CVPR, 2016

[4]: Edgeconnect: Generative image inpainting with adversarial edge learning, arXiv 2019

Motivation

Complete corrupted segmentation map

- Easier to complete
- Provide a global structure guidance
- Exploit relationships under the guidance of segmentation map
 - intra-relationship for pixels in the same semantic region
 - inter-relationship between different regions

Approach

Overall Framework

Visual Illustration

Approach

Segmentation Reconstructor

$$S_{init} = UNet(I_{in})$$

 $S_{in} = S_{init} \cdot (1 - M) + P * M$ In M, 1 indicates the hole

$$S_{pred} = G_s([S_{in}, I_{in}, M])$$

$$L_{parse} = CrossEntropy(S_{perd}, S_{gt})$$

Approach

• Image Generator

P: samples with same groundtruth but different masks

Experiments

	-	PSNR	SSIM	FID
CelebA-HQ	GMCNN [3]	27.35	0.8839	8.81
	EdgeConnect [4]	26.60	0.8724	8.38
	GatedConv [8]	27.12	0.8814	<mark>7</mark> .74
	StructureFlow [9]	27.48	0.8885	7.21
	Ours	28.61	0.9013	5.94
DeepFashion	GMCNN [3]	22.40	0.8074	9.41
	EdgeConnect [4]	22.79	0.8162	10.56
	GatedConv [8]	23.32	0.8175	8.24
	StructureFlow [9]	23.20	0.8166	8.00
	Ours	24.16	0.8197	7.37

	PSNR	SSIM	FID		
w/o segmentation map	26.04	0.8594	10.12		
w/o relation network	27.20	0.8814	8.64		
w/o contrast loss	28.47	0.9004	6.23		
Ours	28.61	0.9013	5.94		
TABLE II					

ABLATION STUDIES OF DIFFERENT COMPONENTS IN OUR METHOD OVER DATASET CELEBA-HQ.

TABLE I

QUANTITATIVE COMPARISONS IN TERMS OF PSNR, SSIM AND FID OVER CELEBA-HQ AND DEEPFASHION DATASETS. BOLD TYPE INDICATES THE BEST PERFORMANCE

Ablation studies

Comparisons with SOTA methods

Experiments

Summary

- 1. A two-stage framework
- 2. Relation network: intra-relationship & inter-relationship
- 3. Contrastive loss.
- 4. Superiority of our method is demonstrated by qualitative results and quantitative comparisons

References

- [1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, "Image inpainting," in Proceedings of the Conference on Computer Graphics and Interactive Techniques, 2000, pp. 417–424.
- [2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, "Patchmatch: A randomized correspondence algorithm for structural image editing," ACM Transactions on Graphics, vol. 28, no. 3, pp. 24–33, 2009.
- [3] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, "Context encoders: Feature learning by inpainting," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2536– 2544.
- [4] K. Nazeri, E. Ng, T. Joseph, F. Z. Qureshi, and M. Ebrahimi, "Edgeconnect: Generative image inpainting with adversarial edge learning," arXiv preprint arXiv:1901.00212, 2019.
- [5] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, "Image inpainting for irregular holes using partial convolutions," in Proceedings of the European Conference on Computer Vision, 2018, pp. 85–100.
- [6] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, "Generative image inpainting with contextual attention," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5505–5514.
- [7] Y. Ren, X. Yu, R. Zhang, T. H. Li, S. Liu, and G. Li, "Structureflow: Image inpainting via structure-aware appearance flow," in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 181–190.
- [8] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, "Free-form image inpainting with gated convolution," in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 4471–4480

Thanks