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• Application
• image restoration, object removal, privacy protection, entertainment



• Diffusion-based or patch-based methods

Related Work

diffusion-based [1]

patch-based [2]

[1]: Image inpainting, 2000
[2]: Patchmatch: A randomized correspondence algorithm for structural image editing, 2009



• Diffusion-based or patch-based methods

• Deep learning related methods

Related Work

Context Encoder [3] Edge Connect [4]

[3]: Context encoders: Feature learning by inpainting, CVPR, 2016
[4]: Edgeconnect: Generative image inpainting with adversarial edge learning, arXiv 2019



Motivation

• Complete corrupted segmentation map
• Easier to complete
• Provide a global structure guidance

• Exploit relationships under the guidance of segmentation map
• intra-relationship for pixels in the same semantic region
• inter-relationship between different regions



Approach

Overall Framework Visual Illustration



• Segmentation Reconstructor

Approach

S = 𝑈𝑁𝑒𝑡(I )

S =  S 1 − M + P ∗ M In M, 1 indicates the hole

S =  𝐺 ([S ,  I , M])

𝐿 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(S , S )



• Image Generator

Approach

I =  𝐺 ([S ,  I , M])

R = S (1 − M )

N = AvgPool S , where S = {𝐹 (𝑖, 𝑗)|𝑅 (𝑖, 𝑗) ≠ 0}

X = σ D AD XW , where A = A + I

F = γ IN F + β

𝐿 = max (0, min d a, P − max d a, N + δ)

XX

𝑃: samples with same groundtruth but different masks



Experiments

Comparisons with SOTA methods

Ablation studies



Experiments



Summary

1. A two-stage framework

2. Relation network: intra-relationship & inter-relationship

3. Contrastive loss.

4. Superiority of our method is demonstrated by qualitative results and 
quantitative comparisons
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