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Learning Pyramid-Context Encoder Network for High-Quality Image Inpainting, CVPR 2019
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Introduction

* Definition
f|II|ng mlssmg reglons of an image with plausible contents

. Challenge
* diverse scenes, arbitrary corrupted regions
* Application
* Image restoration, object removal, privacy protection, entertainment



Related Work

* Diffusion-based or patch-based methods

diffusion-based [1]
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[1]: /mage inpainting, 2000
[2]: Patchmatch. A randomized correspondence algorithm for structural image editing, 2009



Related Work

* Diffusion-based or patch-based methods
* Deep learning related methods
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[3]: Context encoders: Feature learning by inpainting, CVPR, 2016
[4]: Edgeconnect: Generative image inpainting with adversarial edge learning, arXiv 2019
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Motivation

* Complete corrupted segmentation map
* Easier to complete
* Provide a global structure guidance

* Exploit relationships under the guidance of segmentation map
* Intra-relationship for pixels in the same semantic region
* Inter-relationship between different regions
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Approach

* Segmentation Reconstructor

Sinit = UNet(l,)

Sin = Sipit - 1 —M)+PxM In M, 1 indicates the hole

[ j [ ]
’ Segmentation Reconstructor

Spred = Gs([Sin, Lin, M])

Lparse = CrossEntropy(Sperd, Sgt)



Approach

* [Image Generator
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[ Conv Blocks Dilated Conv + Residual Blocks [ Relation Network

Ny = AvgPool(S),where S = {Fg (i, j)|Ry(i,j) # 0}

= G(D 2AD” 2XW), where A = A + 1
Ipred = GI([Spredr lin, M])

Fp =y IN(Fp) + B

Leontrast = Z max (0, min(d(a, P)) — max(d(a,N)) + 8)

a
P: samples with same groundtruth but different masks



Experiments

PSNR SSIM FID
GMCNN [3] 27.35 | 0.8839 8.81
EdgeConnect [4] 26.60 | 0.8724 8.38
CelebA-HQ GatedConv [8] 27.12 | 0.8814 7.74
StructureFlow [9] 27.48 | 0.8885 7.21
Ours 28.61 | 0.9013 5.94
GMCNN [3] 22.40 | 0.8074 9.41
EdgeConnect [4] 2279 0.8162 10.56
DeepFashion GatedConv [§] 23.32 | 0.8175 8.24
StructureFlow [9] 2320 | 0.8166 8.00
Ours 24.16 | 0.8197 g
TABLE

PSNR SSIM FID
w/0 segmentation map | 26.04 | 0.8594 | 10.12
w/o relation network 2720 | 0.8814 8.64
w/o contrast loss 28.47 0.9004 6.23
Ours 28.61 | 0.9013 5.94

LETI

QUANTITATIVE COMPARISONS IN TERMS OF PSNR, SSIM AND FID OVER
CELEBA-HQ AND DEEPFASHION DATASETS. BOLD TYPE INDICATES THE

BEST PERFORMANCE

Comparisons with SOTA methods

DATASET CELEBA-HQ.

Ablation studies

ABLATION STUDIES OF DIFFERENT COMPONENTS IN OUR METHOD OVER



Experiments
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summary

1. A two-stage framework
2. Relation network: intra-relationship & inter-relationship
3. Contrastive loss.

4. Superiority of our method Is demonstrated by qualitative results and
quantitative comparisons
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