

Guillaume Delorme¹, Yihong Xu¹, Stéphane Lathuilière², Radu Horaud¹, Xavier Alameda-Pineda¹ ¹Inria, LJK, Univ. Grenoble Alpes, France ² LTCI, Télécom Paris, IP Paris, France

12/01/2021, ICPR 2020, Milano, Italy

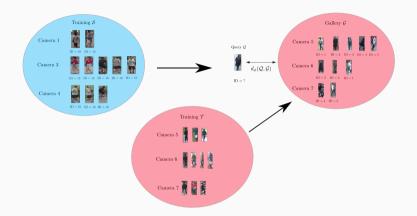
Person Re-Identification

Supervised/Unsupervised Person Re-Identification

• Supervised Re-ID: large annotated datasets and poor generalization.

• Unsupervised Re-ID: Labeled source S, unlabeled target \mathcal{T} : optimizes re-ID performance on \mathcal{T} .

Supervised/Unsupervised Person Re-Identification



- Supervised Re-ID: large annotated datasets and poor generalization.
- Unsupervised Re-ID: Labeled source S, unlabeled target \mathcal{T} : optimizes re-ID performance on \mathcal{T} .

Related Work

Recent works in Unsupervised Person Re-ID are based on the *Clustering* and *Finetuning* framework (SSG¹, MMT²):

Source Pretraining ϕ pretrained on source S in a supervised setting. Alternates between:

f 1 - $f Clustering \; step$ runs clustering on ${\cal T} o$ pseudo-ID labels $ilde{m
ho}^{{\cal T}}$.

2 - Finetuning step ϕ finetuned using $\tilde{\boldsymbol{\rho}}^{\mathcal{T}}$.

¹Yang Fu et al. "Self-similarity grouping: A simple unsupervised cross domain adapt. approach for person re-ID". In: ICCV. 2019.

²Yixiao Ge, Dapeng Chen, and Hongsheng Li. "Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification". In: *ICLR* (2020).

Recent works in Unsupervised Person Re-ID are based on the *Clustering* and *Finetuning* framework (SSG¹, MMT²):

Source Pretraining ϕ pretrained on source S in a supervised setting. Alternates between:

1 - Clustering step runs clustering on $\mathcal{T} \to$ pseudo-ID labels $\tilde{\boldsymbol{p}}^{\mathcal{T}}$.

2 - Finetuning step ϕ finetuned using $\tilde{\boldsymbol{p}}^{\mathcal{T}}$.

¹Yang Fu et al. "Self-similarity grouping: A simple unsupervised cross domain adapt. approach for person re-ID". In: ICCV. 2019.

²Yixiao Ge, Dapeng Chen, and Hongsheng Li. "Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification". In: *ICLR* (2020).

Adversarial Domain Adaptation

Adversarial Domain adaptation strategies³ train a discriminator distinguishing target & source domain.

Domain Generalization⁴: Adversarial framework \rightarrow *Negative Transfer*: discriminator learns **ID-related** instead of **domain-related features**. Happens when different ID prior distributions across domains.

³Yaroslav Ganin et al. "Domain-adversarial training of neural nets". In: *JMLR* (2016).
 ⁴Ya Li et al. "Deep Domain Generalization via Conditional Invariant Adversarial Networks". In: *ECCV*. 2018.

Adversarial Domain Adaptation

Adversarial Domain adaptation strategies³ train a discriminator distinguishing target & source domain.



Domain Generalization⁴: Adversarial framework \rightarrow *Negative Transfer*: discriminator learns **ID-related** instead of **domain-related features**. Happens when different ID prior distributions across domains.

³Yaroslav Ganin et al. "Domain-adversarial training of neural nets". In: *JMLR* (2016).

⁴Ya Li et al. "Deep Domain Generalization via Conditional Invariant Adversarial Networks". In: ECCV. 2018.

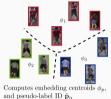
From this analysis we derive the following strategy:

- Camera adversarial-guided clustering: in *Clustering* step, viewpoint/camera variability drives pseudo-label errors.
- **Conditioned adversarial networks**: different ID prior distributions on different cameras lead to **negative transfer**.

Conditional Camera Adversarial Learning

Conditional camera adversarial training pipeline

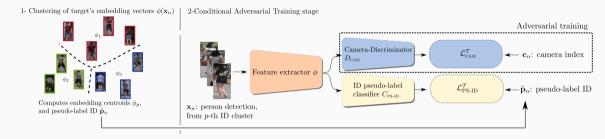
1- Clustering of target's embedding vectors $\phi(\mathbf{x}_n)$



Tackling Negative Transfer

$$\min_{\phi, C_{\text{PS-ID}}} \max_{D_{\text{C-CAM}}} \mathcal{L}_{\text{PS-ID}}^{\mathcal{T}}(\phi, C_{\text{PS-ID}}) - \mu \mathcal{L}_{\text{C-CAM}}^{\mathcal{T}}(\phi, D_{\text{C-CAM}}),$$
(1)
$$\mathcal{L}_{\text{C-CAM}}^{\mathcal{T}}(\phi, D_{\text{C-CAM}}) = -\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{c}) \sim \mathcal{T}} \left\{ \log \left\langle D_{\text{C-CAM}}(\phi(\boldsymbol{x}), \boldsymbol{\phi}_{\boldsymbol{p}}), \boldsymbol{c} \right\rangle \right\}$$
(2)

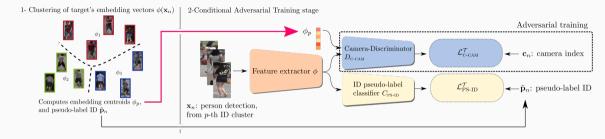
Conditional camera adversarial training pipeline



Tackling Negative Transfer

$$\min_{\phi, C_{\text{PS-ID}}} \max_{D_{\text{C-CAM}}} \mathcal{L}_{\text{PS-ID}}^{\mathcal{T}}(\phi, C_{\text{PS-ID}}) - \mu \mathcal{L}_{\text{C-CAM}}^{\mathcal{T}}(\phi, D_{\text{C-CAM}}),$$
(1)
$$\mathcal{L}_{\text{C-CAM}}^{\mathcal{T}}(\phi, D_{\text{C-CAM}}) = -\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{c}) \sim \mathcal{T}} \left\{ \log \left\langle D_{\text{C-CAM}}(\phi(\boldsymbol{x}), \boldsymbol{\phi}_{\boldsymbol{p}}), \boldsymbol{c} \right\rangle \right\}$$
(2)

Conditional camera adversarial training pipeline



Tackling Negative Transfer

$$\min_{\phi, C_{\text{PS-ID}}} \max_{D_{\text{C-CAM}}} \mathcal{L}_{\text{PS-ID}}^{\mathcal{T}}(\phi, C_{\text{PS-ID}}) - \mu \mathcal{L}_{\text{C-CAM}}^{\mathcal{T}}(\phi, D_{\text{C-CAM}}),$$
(1)
$$\mathcal{L}_{\text{C-CAM}}^{\mathcal{T}}(\phi, D_{\text{C-CAM}}) = -\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{c}) \sim \mathcal{T}} \left\{ \log \left\langle D_{\text{C-CAM}}(\phi(\boldsymbol{x}), \boldsymbol{\phi}_{\boldsymbol{p}}), \boldsymbol{c} \right\rangle \right\}$$
(2)

Advantages:

- Can be **plugged into any** clustering and finetuning strategy \rightarrow CANU-MMT, CANU-SSG
- Explicitely reduces errors in pseudo-ID labels by making embedding space invariant to camera information

Advantages:

- Can be **plugged into any** clustering and finetuning strategy \rightarrow CANU-MMT, CANU-SSG
- Explicitely reduces errors in pseudo-ID labels by making embedding space invariant to camera information

Experimental Evaluation

- Evaluated using Market-1501 (Mkt), DukeMTMC-relD (Duke) and MSMT17 (MSMT) datasets.
- Standard Re-ID metrics (R1 \uparrow and mAP \uparrow) reported.

Table 1: CANU on the Mkt ► Duke and Duke ► Mkt settings.

Table 2: CANU on the Mkt ► MSMT and Duke ► MSMT settings.

Method	Mkt ► Duke		Duke ► Mkt		Method	Mkt ► MSMT		Duke ► MSMT	
	R1	mAP	R1	mAP		R1	mAP	R1	mAP
SSG [1] CANU -SSG (ours)	73.0 76.1			58.3 61.9	SSG [1] CANU -SSG (ours)	31.6 45.5	13.2 19.1	32.2 43.3	13.3 17.9
MMT [2] CANU-MMT (ours)		67.2 70.3			MMT [2] CANU -MMT (ours)	51.6 61.7	26.6 34.6	59.0 66.9	32.0 38.3

Conclusion

Merges **finetuning and clustering** with a **camera-based adversarial** strategy. Solves the **negative transfer** problem with a conditioned approach. Demonstrates its performance on **two state of the art methods**.

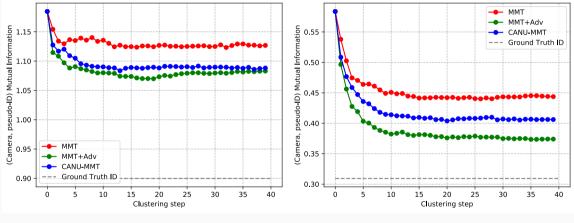
Supplementary Material

Camera adversarial vs Conditional camera adversarial

Method	Mkt 🕨	 Duke 	Duke ► Mkt		
Witting	R1	mAP	R1	mAP	
SSG [1]	73.0	53.4	80.0	58.3	
SSG+Adv.	75.4	56.4	83.8	62.7	
CANU-SSG	76.1	57.0	83.3	61.9	
MMT [2]	80.2	67.2	91.7	79.3	
MMT+Adv.	82.6	70.3	93.6	82.2	
CANU-MMT	83.3	70.3	94.2	83.0	

 Table 3: Impact of the conditional strategy on baselines.

Camera & Pseudo-ID dependancy analysis



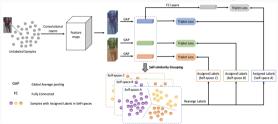
(a) Mkt ► Duke

(b) Duke ► Mkt

Figure 1: Mutual information between pseudo labels and camera index evolution for the MMT baseline. Ground-truth ID comparison is displayed in dashed lines for both datasets.

Clustering and Finetuning - examples

- **Self-similarity grouping** (SSG)⁵ clusters on 3 visual subdomains (full body, upper/lower body),and rely on self-consistency to reduce clustering mistakes.
- Mutual mean-teaching (MMT)⁶ uses teacher-student models, trained with hard pseudo-ID based loss and soft losses supervised by each other's predictions.

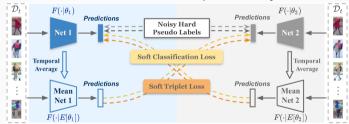


⁵Yang Fu et al. "Self-similarity grouping: A simple unsupervised cross domain adapt. approach for person re-ID". In: *ICCV*. 2019.

⁶Yixiao Ge, Dapeng Chen, and Hongsheng Li. "Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification". In: *ICLR* (2020).

Clustering and Finetuning - examples

- **Self-similarity grouping** (SSG)⁵ clusters on 3 visual subdomains (full body, upper/lower body),and rely on self-consistency to reduce clustering mistakes.
- **Mutual mean-teaching** (MMT)⁶ uses teacher-student models, trained with hard pseudo-ID based loss and soft losses supervised by each other's predictions.



⁵Yang Fu et al. "Self-similarity grouping: A simple unsupervised cross domain adapt. approach for person re-ID". In: *ICCV*. 2019.

⁶Yixiao Ge, Dapeng Chen, and Hongsheng Li. "Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification". In: *ICLR* (2020).

Bibtex

@inproceedings{delorme:hal-02882285,

- $\label{eq:tilde} TITLE = \{CANU-ReID: A \ Conditional \ Adversarial \ Network \ for \ Unsupervised \ person \ Re-IDentification\},$
- $\mathsf{AUTHOR} = \{\mathsf{Delorme, Guillaume and Xu, Yihong and Lathuiliere, Stephane and } \\$
- Horaud, Radu and Alameda-Pineda, Xavier},
- $\mathsf{URL} = \{\mathsf{https:}//\mathsf{hal.inria.fr}/\mathsf{hal-02882285}\},$
- $\mathsf{BOOKTITLE} = \{\mathsf{International \ Conference \ on \ Pattern \ Recognition}\},$
- $\mathsf{ADDRESS} = \{\mathsf{Milano}, \mathsf{Italy}\},$
- $YEAR = \{2021\},\$
- $\mathsf{MONTH}=\mathsf{Jan},$

 $\mathsf{PDF} = \{\mathsf{https:}//\mathsf{hal.inria.fr}/\mathsf{hal-02882285}/\mathsf{file}/\mathsf{delorme_icpr2020.pdf}\},$