

Deep Reinforcement Learning for Autonomous Driving by Transferring Visual Features

Hongli Zhou¹, Xiaolei Chen², Guanwen Zhang^{1*}, Wei Zhou¹ 1 School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China 2 CNPC logging Co.,Ltd, China

Reporter: Zhou Hongli

January 10, 2021

25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

Milan, Italy 10 | 15 January 2021

Introduction

- Method
- **Transfer Results**
 - Conclusions

Introduction

We propose an effective transfer model that combines adversarial training (Perception) with reinforcement learning (Control).

- a) Let X_S and X_T be samples from the source and target scenes for perceptual training (colored lines).
- b) Define the reward (R) and the action (A) of the source environment for control training (black lines).
- c) Perception and control systems are trained synchronously to jointly learns a driving policy from the common latent space Z.
- d) This method does not require feedback from the target scene, yet learns a policy which can be applied directly to the target setting (yellow lines).

Method

A. Perception

In this work, we divide the traditional DRL module into two subsystems: perception and control. The perceptual system maps visual images to a shared latent space by various constraints.

a) Reconstruction loss $\mathcal{L}_{re} = \mathbb{E}_{x_{S} \sim P_{S}}[\|x_{S}^{re} - x_{S}\|_{1}] + \mathbb{E}_{x_{T} \sim P_{T}}[\|x_{T}^{re} - x_{T}\|_{1}]$ b) Translation loss $\mathcal{L}_{tr} = \mathbb{E}_{x_{S} \sim P_{S}}[(D_{T}(x_{T}^{tr}) - c_{S})^{2}] + \mathbb{E}_{x_{T} \sim P_{T}}[(D_{S}(x_{S}^{tr}) - c_{T})^{2}]$ c) Cycle consistency loss $\mathcal{L}_{cy} = \mathbb{E}_{x_{S} \sim P_{S}}[\|x_{S}^{cy} - x_{S}\|_{1}] + \mathbb{E}_{x_{T} \sim P_{T}}[\|x_{T}^{cy} - x_{T}\|_{1}]$ d) Weight sharing $\mathcal{L}_{h} = \mathbb{E}_{x_{S} \sim P_{S}}[(E_{h}(E_{S}(x_{S})) + \eta)^{2}] + \mathbb{E}_{x_{T} \sim P_{T}}[(E_{h}(E_{T}(x_{T})) + \eta)^{2}]$

Finally, by combining these individual losses we define the perceptual loss to be:

 $\mathcal{L}_{perceptual} = \lambda_{re}\mathcal{L}_{re} + \lambda_{tr}\mathcal{L}_{tr} + \lambda_{cy}\mathcal{L}_{cy} + \lambda_{h}\mathcal{L}_{h}$

Method

The control system trains driving policy with reinforcement learning in the low-dimensional state. The dynamic process of MDP in the control system:

$$(x_0^S) \xrightarrow{E_h + E_S} (z_0^S) \xrightarrow{a_0^S} (x_1^S) \xrightarrow{E_h + E_S} (z_1^S) \xrightarrow{a_1^S} (x_2^S) \xrightarrow{E_h + E_S} (z_2^S) \xrightarrow{E_H +$$

a) Define the future accumulated reward function as:

$$Q^{\pi}(z_{t}^{S}, a_{t}^{S}) = E[r_{t+1}^{S} + \gamma r_{t+2}^{S} + \gamma^{2} r_{t+3}^{S} + \cdots | z_{t}^{S}, a_{t}^{S}]$$

b) Extend Deep Q-Network to design the control module and stabilize the training of driving policy using experience replay and target network:

$$\mathcal{L}_{control} = E[(r_{t}^{S} + \gamma max_{a_{t+1}}^{S}Q(z_{t+1}^{S}, a_{t+1}^{S}|\theta^{-}) - Q(z_{t}^{S}, a_{t}^{S}|\theta))^{2}]$$

Transfer Results

The Double DQN, GAN-DDQN, and Our model training curves tracking the agents average maximum predicted action-value of six transfer tasks.

Our model has a good initial performance and converges fastest. It does not over-extract the features of the source environment, and learns a general policy that can adapt to the target scene.

Transfer Results

TRANSFER RESULTS BETWEEN DIFFERENT SCENES							
Transfer Results		Double dqn		Gan-ddqn		Our model	
		T R	Laps%	T R	Laps%	T R	Laps%
Scene1→Scene2	Source	6962.2	100%	1742.2	23%	6081.7	100%
	Target	128.8	2.4%	353.1	6.2%	5844.4	100%
Scene1→Scene3	Source	7022.5	100%	2916.4	39%	6114.8	100%
	Target	261.4	5.4%	4803.8	100%	3769	100%
Scene2→Scene1	Source	6543.4	100%	2960.2	44%	7231.6	100%
	Target	951.8	20%	3391.4	91%	5746.5	100%
Scene2→Scene3	Source	7166.4	100%	94.8	2%	1870.3	38.5%
	Target	212.7	3%	5082.5	100%	5195.8	100%
Scene3→Scene1	Source	2363.4	50%	1100.7	20%	48591	100%
	Target	4603.1	73%	5447.7	79%	7381.4	100%
Scene3→Scene2	Source	2773.7	57%	125.6	3%	5625.5	100%
	Target	92.6	1.5%	736.8	12%	6419.6	100%

Milan, Italy 10 | 15 January 2021

Transfer Results

Transfer results from Scene 3 to Scene 2 Training in Source Scene 3 Double DON GAN-DDON Our model Testing in Target Scene 2 Double DQN GAN-DDQN Our model

This video shows the transfer results from scene 3 to scene 2 of the simulator clearly. The driving policy trained in the source scene can be directly applied to the target scene without fine-tuning. Our model performs stable in both source and target environments.

- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, "Playing atari with deep reinforcement learning,"arXiv preprint arXiv:1312.5602, 2013
- ② V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., "Human-level control through deep reinforcement learning," Nature, vol. 518, no. 7540, pp. 529–533, 2015.
- (3) L. T. P. Yun, Y. Chen, C. Liu, and H. Y. M. Liu, "Visual-based autonomous driving deployment from a stochastic and uncertainty-aware perspective."
- (4) X. Zhang, M. Zhou, H. Liu, and A. Hussain, "A cognitively inspired system architecture for the mengshi cognitive vehicle," Cognitive Computation, vol. 12, no. 1, pp. 140–149, 2020.
- (5) G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, "Selfsupervised deep reinforcement learning with generalized computation graphs for robot navigation," in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 1–8.
- (6) R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning. MIT press Cambridge, 1998, vol. 135.
- ⑦ A. Ganesh, J. Charalel, M. D. Sarma, and N. Xu, "Deep reinforcement learning for simulated autonomous driving," 2016.
- (a) N. Xu, B. Tan, and B. Kong, "Autonomous driving in reality with reinforcement learning and image translation," arXiv preprint arXiv: 1801.05299, 2018.
- (9) K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, "Quantifying generalization in reinforcement learning," arXiv preprint arXiv: 1812.02341, 2018.
- 10 C. Asawa, C. Elamri, and D. Pan, "Using transfer learning between games to improve deep reinforcement learning performance and stability."
- (1) H. Sui, W. Shang, and X. Li, "Transfer of robot perception module with adversarial learning," IEEE Access, vol. 7, pp. 79 726–79 736, 2019.
- (12) M.-Y. Liu, T. Breuel, and J. Kautz, "Unsupervised image-to-image translation networks," in Advances in neural information processing systems, 2017, pp. 700–708.
- (13) Z. Murez, S. Kolouri, D. Kriegman, R. Ramamoorthi, and K. Kim, "Image to image translation for domain adaptation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4500–4509.
- (14) E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, "Adversarial discriminative domain adaptation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7167–7176.

THANKS FOR YOUR ATTENTION