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Introduction

d)

We propose an effective transfer model that combines adversarial
training (Perception) with reinforcement learning (Control).

Let X5 and X be samples from the source and target scenes for
perceptual training (colored lines).

Define the reward (R) and the action (A) of the source
environment for control training (black lines).

Perception and control systems are trained synchronously to
jointly learns a driving policy from the common latent space Z.
This method does not require feedback from the target scene, yet
learns a policy which can be applied directly to the target setting
(yellow lines).



25! INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION
Milan,ltaly 10 | 15 January 2021

In this work, we divide the traditional DRL module into two
subsystems: perception and control. The perceptual system maps
visual images to a shared latent space by various constraints.

a) Reconstruction loss

Lre = IEXs'VPs[" x;:e - xS "1] + IEXT~PT[|| x%:e - xT "1]
b) Translation loss

Ltr = IExS~PS[(DT(x’1t"r - CS)Z] + IExT~PT[(DS(x§T) _ CT)Z]

c) Cycle consistency loss

Ley = Exgopg|ll x5 = x5 11| + Expp, [Il X7 — 7 Il4]

d) Weight sharing

| Ly = Exgpg| (En(Es(is)) + M2 + Expopy [ (En(Er(xr)) +m)?]
| Target NN |

fffffffffffff ’ Finally, by combining these individual losses we define
\maxagﬂQ(ztsﬂ'agﬂlg_)

~

Main_NN

Q(z7,a?16)

»
>

vL the perceptual loss to be:

['perceptual = AreLre + Atr['tr + Acy['cy + Ah['h

» Lcontrol
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The control system trains driving policy with reinforcement
learning in the low-dimensional state. The dynamic process of
MDP in the control system:

a) Define the future accumulated reward function as:

Qn(zg" af) = E[rts+1 + VTtS+2 + Vzrts+3 + - |Zf, af]

b) Extend Deep Q-Network to design the control module and
g \ stabilize the training of driving policy using experience replay
{ Target_NN .
Sk Ak - and target network:
Q(ng,atS'B) maxagﬂQ(ZtSHv ats+1|9_) _

. \ Lcontrol = E[(rfs + )/maxa.g+1Q(Zf+1, aig+1|9 ) - Q(Zf:sr a§|9))2]

il Lcontrol

~

Main_NN
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The Double DQN, GAN-
DDQN, and Our model training
tracking the agents
maximum  predicted

curves
average
action-value of six transfer tasks.

Our model has a good initial
performance and converges
fastest. It does not over-extract
the features of the source
environment, and learns a
general policy that can adapt to
the target scene.
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Transfer Resul

tS

TRANSFER RESULTS BETWEEN DIFFERENT SCENES

Double dgn Gan-ddgn Our model
Transfer Results

TR Laps% TR Laps% TR Laps%
Source 6962.2 100% 1742.2 23% 6081.7 100%

Scenel—Scene2
Target 128.8 2.4% 353.1 6.2% 5844 .4 100%
Source 7022.5 100% 2916.4 39% 6114.8 100%

Scenel—Scene3
Target 261.4 5.4% 4803.8 100% 3769 100%
Source 6543.4 100% 2960.2 44% 7231.6 100%

Scene2—Scenel
Target 051.8 20% 3391.4 91% 5746.5 100%
Source 7166.4 100% 94.8 2% 1870.3 38.5%

Scene2—Scene3
Target 212.7 3% 5082.5 100% 5195.8 100%
Source 2363.4 50% 1100.7 20% 48591 100%

Scene3—Scenel
Target 4603.1 73% 5447.7 79% 7381.4 100%
Source 2773.7 57% 125.6 3% 5625.5 100%

Scene3—Scene?2
Target 92.6 1.5% 736.8 12% 6419.6 100%
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This video shows the transfer results from scene 3
to scene 2 of the simulator clearly. The driving
policy trained in the source scene can be directly
applied to the target scene without fine-tuning. Our
model performs stable in both source and target
environments.
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