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▪ Pyramidal features in object detection

• Feature Pyramid Method

• To detect objects of various sizes, object detectors often 

exploit the multiscale feature maps called feature 

pyramids as shown in (a) , which are obtained by the 

backbone network.

➢ However, the bottom-level features are not deep 

enough to exhibit high-level semantics underlying 

in the objects and their surroundings.

• Top-down-based Method

• To provide the contextual information to the bottom-level 

features, top-down-based method using lateral 

connections are proposed as illustrated in Fig. 1 (c).

• These methods include DSSD [1], FPN [2], StairNet [3], 

and HR-FPN [4].
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▪ Pyramidal features in object detection

➢ Motivation of Proposed ScarfNet

1. The capacity of the current architectures for 

generating top-down features might not be large 

enough to generate strong semantics for all scales.

2. The biLSTM is used to combine the multiscale 

features to incorporate strong semantics for feature 

pyramids.



▪ Overall Architecture

1. ScNet (Semantic Combining Network)

• Combining the scattered semantic information using biLSTM

2. ArNet (Attentive Redistribution Network)

• Redistributing the fused semantics back to each pyramid level using the channel-wise attention model.

Proposed Network : ScarfNet
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▪ Overall Architecture

➢ Procedures

1. Backbone network generate 𝑘 pyramidal features

– 𝑋𝑛−𝑘+1:𝑛 = [𝑋𝑛−𝑘+1, 𝑋𝑛−𝑘+2, … , 𝑋𝑛]

2. ScNet produces the feature maps 𝑋𝑛−𝑘+1:𝑛
𝑓

– 𝑋𝑛−𝑘+1:𝑛
𝑓

= 𝑆𝑐𝑁𝑒𝑡(𝑋𝑛−𝑘+1:𝑛)

3. Concatenate the output features of ScNet 𝑋𝑛−𝑘+1:𝑛
𝑓

.

4. ArNet produce the high-level semantic feature map and concatenated with the original feature to produce the final 

output feature 𝑋𝑙
′.

– 𝑋𝑙
′ = 𝑋𝑙⨁𝐴𝑟𝑁𝑒𝑡 𝑋𝑛−𝑘+1:𝑛

𝑓

➢ The overall procedures can be expressed as 

• 𝑋𝑙
′ = 𝑆𝑐𝑎𝑟𝑓𝑁𝑒𝑡 𝑋𝑛−𝑘+1:𝑛 = 𝑋𝑙⨁𝐴𝑟𝑁𝑒𝑡𝑙 𝑆𝑐𝑁𝑒𝑡 𝑋𝑛−𝑘+1:𝑛 ,

Proposed Network : ScarfNet
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▪ ScNet (Semantic Combining Network)

• Objective : combine the scattered semantic information

1. Matching block

– Resizes the pyramidal features such that they have the same size. Then, it adjusts 

the channel dimension of the input using the 1x1  convolutional layer.

2. biLSTM

– The biLSTM model can selectively fuse the contextual information in multiscale 

features through the gating function.

Proposed Network : ScarfNet
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▪ ArNet (Attentive Redistribution Network)

• Objective : produce the high-level semantic feature map

1. Attention Block

– After channel-wise concatenation of the outputs of ScNet, apply 

the channel-wise attention to them.

2. Matching Block

– The matching block down-samples the attentive feature maps to 

the original size of the pyramidal features

3. High-Level Semantic features

– Finally, the output of the matching block is concatenated with the 

original feature to produce the highly semantic feature.

Proposed Network : ScarfNet
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▪ Experimental Setup

• Baseline Detectors

• Faster R-CNN [5]

• SSD [6]

• RetinaNet [7]

• Datasets

• PASCAL VOC 2007 [8]

• PASCAL VOC 2012 [8]

• MS COCO [9]

Experiments

8



▪ Results on PASCAL VOC 2007, 2012

Experiments on PASCAL VOC

9



▪ Results on MS COCO

Experiments on MS COCO
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▪ Results

Experiments (Ablation study)
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Conclusion

▪ Conclusion

• In this study, we developed a deep architecture that generates multiscale features with strong semantics to reliably 

detect the objects in various sizes.

• Our ScarfNet method transforms the pyramidal features produced by the baseline detector into evenly abstract features. 

ScarfNet fuses the pyramidal features using biLSTM and distributes the semantics back to each multiscale feature.

• We verified through experiments conducted with PASCAL VOC and MS COCO datasets that the proposed ScarfNet

method significantly increases the detection performance over the baseline detectors.

• Our object detector achieves the state-of-the-art performance on the PASCAL VOC and COCO benchmarks.
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