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Within the context of eye-gaze tracking, the capability of permitting the user to move naturally is an 
important step towards allowing for more natural user interaction in less constrained scenarios. 

The few methods that factor the challenge of handling face deformations into the head pose estimation problem, 
often require the availability of a pre-defined face model or a considerable amount of training data [2,3].

Introduction

Non-rigid facial expressions are a common occurrence during tracking, and it has also been shown that 
these introduce pose estimation errors if they are not catered for [1]. 

Nonetheless, this challenge has not been widely addressed by both the eye-gaze tracking and the head 
pose estimation communities. 
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In this paper, we direct our attention towards the application of shape-and-motion factorisation for head 
pose estimation, since this does not generally rely on the availability of an initial face model.

Introduction

Over the years, various shape-and-motion factorisation methods have been proposed to address the 
challenges of rigid and non-rigid shape and motion recovery, in a batch or sequential manner. However, the 
real-time recovery of non-rigid shape and motion by factorisation remains, in general, an open problem.

Our work combines the sequential rigid method of Morita and Kanade [4] together with the non-rigid batch-type 
method of Bregler et al. [5] into a sequential factorisation method for non-rigid shape and motion recovery. 

[4]  T. Morita and T. Kanade, “A sequential factorization method for recov- ering shape and motion from image streams,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 858–867, 1997. 
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 face landmark points are first localised by the 
method of Kazemi and Sullivan [6] and stored in 
a covariance-type matrix, , of size  [4]:
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[6]  V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of regression trees,” in IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1867–1874. 



The covariance-type matrix,  , is related to the measurement matrix,  , as follows: Zf Wf Zf = WT
f Wf
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where  , of size , collects the  and  landmark coordinates over   image frames.Wf 2F × P xf yf f = 1,…, F

where   is the best estimate of   following its decomposition by singular value decomposition (SVD) in 

the presence of noise. 
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This is compared to the formulation of the measurement matrix proposed by the batch-type method of 
Bregler et al. [5]: 

It is seen that the eigenvectors   of   capture the non-rigid face deformations in matrix,  . Vf Ẑf B̂f
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where matrix  contains the motion matrices,  , and configuration weights,   for  basis shapes, 

while matrix  contains the key-frame basis shapes. 
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The vectors comprising matrix,  , are subsequently recovered [1]: Q̂f q(1)
f = xT

f B̂f q(2)
f = yT

f B̂f

A rank-1 factorisation is applied on   to recover the motion matrix,   and the configuration weights,  [4].Q̂f M̂f lKf
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where  and  of size  correspond to the two rows that form matrix,  .q(1)
f q(2)

f 1 × 3K Q̂f

The final step enforces orthonormality constraints on the motion matrix,  , resulting in the computation of a 

 transformation matrix producing a unique decomposition of the measurement matrix: 
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Experimental Procedure

A subject was cued to perform various facial 
expressions: neutral, happiness, sadness, fear, 
surprise, anger, disgust and contempt. 

Each facial expression lasts 100 image frames, 
and ground truth head yaw, pitch and roll angles 
were recorded by an inertial measurement unit 
positioned on top of the head. 



Experimental Procedure

A further evaluation was carried out on image sequences from the Extended Cohn-Kanade (CK+) dataset 
to widen the expressions and subject appearances under consideration. Each image sequence starts with 
a neutral facial pose and ends with the peak formation of the facial expression. 

In absence of ground truth head rotation angles, subjects maintaining a stationary frontal and upright head 
pose were manually selected. 



Results - Cued Dataset

1. Stationary head and rigid face. 
2. Free head movement and rigid face.
3. Stationary head pose and cued non-rigid face deformations. 

4. Free head movement and cued non-rigid face deformations.
5. Free head movement and cued non-rigid face deformations, followed by free head 

movement and rigid face, followed by stationary head pose and rigid face. 
6. Free head movement and natural non-rigid face deformations during conversation. 
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Conclusion

In this work, we have proposed a method that combines the sequential rigid method of Morita and Kanade [4] 
together with the non-rigid batch-type method of Bregler et al. [5] into a sequential factorisation method for 
non-rigid shape and motion recovery. 

The results revealed that the proposed method performed better than the batch-type method of Bregler et al. [5], 
with the important advantage of running in real-time rather than in batch mode. 

The improvement in accuracy over the rigid factorisation method of Morita and Kanade [4] confirms the 
importance of compensating for non-rigid face deformations. 


