ConvMath : A Convolutional Sequence Network for Mathematical Expression Recognition

Zuoyu Yan, Xiaode Zhang, Liangcai Gao, Ke Yuan and Zhi Tang

Wangxuan Institute of Computer Technology Peking University

December, 2020

Presentation

December, 2020

1 / 22

- Introduction
- 2 Network architecture
- Section 2018
 Section 2018
- Onclusion

3

イロト イヨト イヨト イヨト

1 Introduction

- 2 Network architecture
- Section 2018
 Section 2018
- Onclusion

3

イロト イヨト イヨト イヨト

Introduction

Main task:

• Converts the mathematical expression description in an image into a LaTeX sequence

Math expressions:

- Exhibit complicated 2-D layout(CONTAIN, ABOVE, BELOW, etc.)
- Variant scales: caused by symbol position or input
- Symbols similar in expression: α and a, π and \prod
- Complexity of solution for mathematical expression increases dramatically with the number of math symbols

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction

Motivation:

- Encoder-decoder model has been applied to previous works: WAP¹
- Trained end2end: no need to define heuristic grammar rules
- Residual encoder: combine high-level and low-level features to handle scale variance
- Decoder with attention mechanism: focus on the most relevant part of math presentations
- Convolutional based: for speed up

- 32

¹Zhang J, Du J, Dai L. Multi-scale attention with dense encoder for handwritten mathematical expression recognition[C]//2018 24th international conference on pattern recognition (ICPR). IEEE, 2018: 2245-2250.

- Introduction
- **2** Network architecture
- Section 2018
 Section 2018
- Onclusion

イロト イヨト イヨト イヨト

æ

Network architecture

- Input: grey scale image: $X \in \mathbb{R}^{W * H}$
- Output: Latex sequence $Y = \{y_1, y_2, ..., y_T\}$
- Task: $\theta^* = argmax_{\theta} \sum_{D} logp(Y|X)$ where θ denotes the parameters of the model

(WICT, PKU)

- 34

7 / 22

Residual encoder:

- Input: grey scale image: $X \in \mathbb{R}^{W * H}$
- Output: feature map $\in R^{W'*H'*D}$
- Rearranged output: a sequence of feature vectors $V = \{v_1, v_2, ..., v_{W'*H'}\}$ where $v_i \in R^D$
- Rearrangement may break out spatial dependency: attention can focus on the most relevant part

- -

Network architecture

Residual encoder:

- Can be viewed as combination of low and high level feature, which is both beneficial to modeling 2-D relationships and preserving detailed information
- Easy to optimize and keep the capacity at the same time
- Consists of six residual blocks as shown
- A 1*1 convolution to match the dimensions(solid line) and feature map sizes(dotted line)

Presentation

(WICT, PKU)

Convolutional decoder:

- Input: feature vectors $V = \{v_1, v_2, ..., v_{W'*H'}\}$
- Output: Latex sequence $Y = \{y_1, y_2, ..., y_T\}$
- Entirely convolutional: both the size of image and Latex string are not fixed

イロト イヨト イヨト

3

Latex embedding and position embedding:

- Latex embedding: $W = \{w_1, w_2, ..., w_n\}$, where $w_i \in \mathbb{R}^D$, same setting as
- Position embedding(important for convolutional decoder): $P = \{p_1, p_2, ..., p_N\}$, where $p_i \in \mathbb{R}^D$, same setting as ³
- Final representation: $G = \{g_1, g_2, ..., g_N\} = \{w_1 + p_1, w_2 + p_2, ..., w_N + p_N\}$

(WICT, PKU)

²Sennrich R, Haddow B. Linguistic input features improve neural machine translation[J]. arXiv preprint arXiv:1606.02892, 2016.

 $^{^{3}}$ Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.

Convolutional decoder:

- Stack multiple(L) basic blocks
- Output of the l-th block: $h_l = \{h_1^l, h_2^l, ..., h_N^l\}$
- Residual connection between blocks: $h^l = conv(h^{l-1}) + h^{l-1}$
- Final output probability: $p(y_{i+1}|y_1,...,y_i,V) = softmax(Wh_i^L + b) \in \mathbb{R}^K$ where W and b are weight and bias of the linear mapping layer, K is the size of vocabulary
- Minimize: $L = -\frac{1}{|D|} \sum_D \sum_{i=1}^N logp(y_i|y_{< i}, X)$

(D) (A) (A) (A) (A) (A)

Basic decoder block:

- Consists of a 1-dimensional convolution and a subsequent gated linear unit(GLU)
- 1-dimensional convolution: capture the dependencies among Latex symbols, with weight $W \in \mathbb{R}^{2D * kD}$ and bias $b \in \mathbb{R}^{2D}$
- Input: k continuous elements in a Latex string, output: 2D-dimensional ٠ vector $M \in \mathbb{R}^{2D} = [A; B]$ where $A \in \mathbb{R}^D, B \in \mathbb{R}^D$
- GLU: to select the important part: $GLU(M) = A \otimes \sigma(B)$ where \otimes is the point-wise multiplication and σ is sigmoid function

Network architecture

Attention mechanism:

- To focus on the most relevant part
- Content vector: $c_i^l = \sum_{j=1}^{W'*H'} a_{ij}^l v_j$, here c_i^l is the content vector of the l-th decoder layer corresponding to the i-th state

• Attention score:
$$a_{ij}^l = \frac{exp(d_i^l, v_j)}{\sum_{t=1}^{W'*H'} exp(d_i^l, v_t)}$$

• Decoder state summary: $d_i^l = W_d^l h_i^l + b_d^l + g_i$, which combines the current layer output and representation of the previous target element g_i

•
$$c_i^l + h_i^l$$
 as the input of the next layer

イロト イポト イヨト イヨト

Network architecture

Attention mechanism:

- Applied to each decoder layer
- Alleviate the problem of lacking coverage
- Coverage: the overall alignment information that indicates whether a local region of the feature vector has been translated
- Under/Over parsing: some feature vectors are not parsed/ generated multiple times
- Previous attention is accumulated: achieve the tracking of past alignment information

15 / 22

- Introduction
- 2 Network architecture
- Section 2 Constraints
- Onclusion

ъ

16 / 22

イロト イヨト イヨト イヨト

Experiments

Method	BLEU	time(s/batch)	Edit Distance	Exact Match
WYGIWYS [18]	87.73	0.129	87.60	79.88
WAP [1]	88.21	0.135	89.58	82.08
ConvMath	88.33	0.083	90.80	83.41

TABLE I: Experimental results on IM2LATEX-100K.

- Dataset: IM2LATEX-100K, contains Latex expressions from over 60000 papers from arxiv
- Training/validation/test set: 65995/8181/8301 expressions
- Symbol dictionary: 583, embedding size: 512
- Evaluation: BLEU score, column-wise edit distance, exact match accuracy, the elapsed time to finish a forward inference for a batch(batch size 10)

イロト イポト イヨト イヨト 二日

Experiments

Method	BLEU
WYGIWYS [18]	87.73
WAP [1]	88.21
ConvMath_SimpleEncoder	80.72
ConvMath(3 decoder layers)	84.81
ConvMath(5 decoder layers)	87.61
ConvMath(7 decoder layers)	88.33
ConvMath(9 decoder layers)	88.04

TABLE II: Contributions of different parts in the proposed network.

- Residual encoder: ConvMath_simple Encoder and ConvMath(7 decoder layers): combine high-level and low-level features
- The performance with regard to the depth of decoder: increases first(large receptive field) and drops after(risk of overfitting)

18 / 22

Case study

Image	$M_g = M_{c_1} M_{c_2} M_{c_3} M_{c_4} M_{c_5} M_{r=\infty} = 1$
Ground truth	$ M_{g} = M_{c_{1}} M_{c_{2}} M_{c_{3}} M_{c_$
WYGIWYS	
ConvMath	
Image	$V(z,\bar{z}) = e^{-q\Phi(z)}e^{i\alpha \cdot H}e^{i(P_R \cdot X_R - P_L \cdot X_L)} ,$
Ground truth	V (z , \bar { z }) = e ^ { - q \Phi (z) } e ^ { i \alpha \cdot H } e ^ { i (P _ { R } \cdot X _ { R } - P _ { L } \cdot X _ { L }) }\; ,
WYGIWYS	V (z, \bar {z}) = e ^ { - q \Phi (z) } e ^ { i \alpha \cdot H } e ^ { i (P_{ R \rightarrow X_{ R } - P_{ L } X_{ L }) }, \hspace { 1 c m }
ConvMath	V (z , \bar { z }) = e ^ { - q \Phi (z) } e ^ { i \alpha \cdot H } e ^ { i (P _ { R } \cdot X _ { R } - P _ { L } \cdot X _ { L }) } \;
Image	$R(e_1) = \epsilon^{-J_{67} + J_{89}}, R(e_2) = \epsilon^{J_{45} - J_{89}}.$
Ground truth	R (e _ { 1 }) = \epsilon ^ { - J _ { 6 7 } + J _ { 8 9 } }, R (e _ { 2 }) = \epsilon ^ { J _ { 4 5 } - J _ { 8 9 } }.
WYGIWYS	$ \begin{array}{l} R(e_{1}) = \left\{ e_{1} \right\} = \left\{ e_{1} \right\}$
ConvMath	R (e _ { 1 }) = \epsilon ^ { - J _ { 0 } + J _ { 8 9 }}, R (e _ { 2 }) = \epsilon ^ { I _ { 4 }} - J _ { 8 9 }}.

- Errors: highlighted in red
- Over parsing rarely happens
- Under parsing is common(the third example)
- Future direction: strengthen the ability to deal with under parsing problems

(WICT, PKU)

December, 2020

3) 3

19 / 22

< 17 b

- Introduction
- 2 Network architecture
- Section 2018
 Section 2018
- Onclusion

イロト イヨト イヨト イヨト

ъ

Conclusion

Contribution:

- Propose a convolution based model which achieves SOTA results and much higher speed
- Residual encoder to combine high-level and low-level features
- Combine multi-layer attention mechanism with the decoder, which solves the problem of lacking coverage

Future directions:

- Evaluate the network on other datasets like handwritten mathematical expression datasets.
- Apply the network to other tasks such as image caption generation, musical score recognition et al.

Thanks for listening!

<ロ> (四) (四) (日) (日) (日)

■ _ _ のへ (や