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Introduction

Main task:

Converts the mathematical expression description in an image into a
LaTeX sequence

Math expressions:

Exhibit complicated 2-D layout(CONTAIN, ABOVE, BELOW, etc.)

Variant scales: caused by symbol position or input

Symbols similar in expression: α and a, π and
∏

Complexity of solution for mathematical expression increases
dramatically with the number of math symbols
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Introduction

Motivation:

Encoder-decoder model has been applied to previous works: WAP1

Trained end2end: no need to define heuristic grammar rules

Residual encoder: combine high-level and low-level features to handle
scale variance

Decoder with attention mechanism: focus on the most relevant part of
math presentations

Convolutional based: for speed up

1
Zhang J, Du J, Dai L. Multi-scale attention with dense encoder for handwritten

mathematical expression recognition[C]//2018 24th international conference on pattern
recognition (ICPR). IEEE, 2018: 2245-2250.
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Network architecture

Input: grey scale image: X ∈ RW∗H

Output: Latex sequence Y = {y1, y2, ..., yT }

Task: θ∗ = argmaxθ

∑
D logp(Y |X) where θ denotes the parameters of

the model
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Network architecture

Residual encoder:

Input: grey scale image: X ∈ RW∗H

Output: feature map ∈ RW ′∗H′∗D

Rearranged output: a sequence of feature vectors V = {v1, v2, ..., vW ′∗H′}
where vi ∈ RD

Rearrangement may break out spatial dependency: attention can focus
on the most relevant part
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Network architecture

Residual encoder:

Can be viewed as combination of
low and high level feature, which
is both beneficial to modeling 2-D
relationships and preserving
detailed information

Easy to optimize and keep the
capacity at the same time

Consists of six residual blocks as
shown

A 1*1 convolution to match the
dimensions(solid line) and feature
map sizes(dotted line)

3灅3 conv, s=1, p=1, out_channel =64

3灅3 conv, s=1, p=1, out_channel =64

max pool, /2

3灅3 conv, s=1, p=1, out_channel =128

3灅3 conv, s=1, p=1, out_channel =128

3灅3 conv, s=2, p=1, out_channel =128, /2

3灅3 conv, s=1, p=1, out_channel =128

3灅3 conv, s=1, p=1, out_channel =256

3灅3 conv, s=1, p=1, out_channel =256

3灅3 conv, s=2, p=1, out_channel =256, /2

3灅3 conv, s=1, p=1, out_channel =256

3灅3 conv, s=1, p=1, out_channel =512

3灅3 conv, s=1, p=1, out_channel =512

3灅3 conv, s=2, p=1, out_channel =512, /2

3灅3 conv, s=1, p=1, out_channel =512

input image

feature map

1灅1 conv, s=1

1灅1 conv, s=2

1灅1 conv, s=1

1灅1 conv, s=2

1灅1 conv, s=1

1灅1 conv, s=2
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Network architecture

Convolutional decoder:

Input: feature vectors V = {v1, v2, ..., vW ′∗H′}

Output: Latex sequence Y = {y1, y2, ..., yT }

Entirely convolutional: both the size of image and Latex string are not
fixed
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Network architecture

Latex embedding and position embedding:

Latex embedding: W = {w1, w2, ..., wn}, where wi ∈ RD, same setting as
2

Position embedding(important for convolutional decoder):
P = {p1, p2, ..., pN}, where pi ∈ RD, same setting as 3

Final representation:
G = {g1, g2, ..., gN} = {w1 + p1, w2 + p2, ..., wN + pN}

2
Sennrich R, Haddow B. Linguistic input features improve neural machine translation[J].

arXiv preprint arXiv:1606.02892, 2016.
3
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural

information processing systems. 2017: 5998-6008.
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Network architecture

Convolutional decoder:

Stack multiple(L) basic blocks

Output of the l-th block: hl = {hl
1, h

l
2, ..., h

l
N}

Residual connection between blocks: hl = conv(hl−1) + hl−1

Final output probability:
p(yi+1|y1, ..., yi, V ) = softmax(WhL

i + b) ∈ RK where W and b are
weight and bias of the linear mapping layer, K is the size of vocabulary

Minimize: L = − 1
|D|

∑
D

∑N
i=1 logp(yi|y<i, X)
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Network architecture

Basic decoder block:

Consists of a 1-dimensional convolution and a subsequent gated linear
unit(GLU)

1-dimensional convolution: capture the dependencies among Latex
symbols, with weight W ∈ R2D∗kD and bias b ∈ R2D

Input: k continuous elements in a Latex string, output: 2D-dimensional
vector M ∈ R2D = [A;B] where A ∈ RD, B ∈ RD

GLU: to select the important part: GLU(M) = A⊗ σ(B) where ⊗ is the
point-wise multiplication and σ is sigmoid function
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Network architecture

Attention mechanism:

To focus on the most relevant part

Content vector: cli =
∑W ′∗H′

j=1 alijvj , here cli is the content vector of the
l-th decoder layer corresponding to the i-th state

Attention score: alij =
exp(dl

i,vj)∑W ′∗H′
t=1 exp(dl

i,vt)

Decoder state summary: dli = W l
dh

l
i + bld + gi, which combines the

current layer output and representation of the previous target element gi

cli + hl
i as the input of the next layer
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Network architecture

Attention mechanism:

Applied to each decoder layer

Alleviate the problem of lacking coverage

Coverage: the overall alignment information that indicates whether a
local region of the feature vector has been translated

Under/Over parsing: some feature vectors are not parsed/ generated
multiple times

Previous attention is accumulated: achieve the tracking of past
alignment information
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Experiments

Dataset: IM2LATEX-100K, contains Latex expressions from over 60000
papers from arxiv

Training/validation/test set: 65995/8181/8301 expressions

Symbol dictionary: 583, embedding size: 512

Evaluation: BLEU score, column-wise edit distance, exact match
accuracy, the elapsed time to finish a forward inference for a batch(batch
size 10)
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Experiments

Residual encoder: ConvMath simple Encoder and ConvMath(7 decoder
layers): combine high-level and low-level features

The performance with regard to the depth of decoder: increases
first(large receptive field) and drops after(risk of overfitting)
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Case study

Image

Ground 

truth

M _ { g } = M _ { c _ { 1 } } M _ { c _ { 2 } } M _ { c _ { 3 } } M _ 

{ c _ { 4 } } M _ { c _ { 5 } } M _ { r = \infty } = 1

WYGIWYS

M _ { g } = M _ { c _ { 1 } } M _ { c _ { 2 } } M _ { c _ { 3 } } M _ 

{ c _ { 2 } } M _ { c _ { 5 } } M _ { r = \infty } = 1 \qquad \qquad

ConvMath
M _ { g } = M _ { c _ { 1 } } M _ { c _ { 2 } } M _ { c _ { 3 } } M _ 

{ c _ { 4 } } M _ { c _ { 5 } } M _ { r = \infty } = 1

Image

Ground 

truth

V ( z , \bar { z } ) = e ^ { - q \Phi ( z ) } e ^ { i \alpha \cdot H } e 

^ { i ( P _ { R } \cdot X _ { R } - P _ { L } \cdot X _ { L } ) } \; ,

WYGIWYS

V ( z , \bar { z } ) = e ^ { - q \Phi ( z ) } e ^ { i \alpha \cdot H } e 

^ { i ( P _ { R } \rightarrow X _ { R } - P _ { L } X _ { L } ) } \; , 

\hspace { 1 c m } 

ConvMath
V ( z , \bar { z } ) = e ^ { - q \Phi ( z ) } e ^ { i \alpha \cdot H } e 

^ { i ( P _ { R } \cdot X _ { R } - P _ { L } \cdot X _ { L } ) } \; 

Image

Ground 

truth

R ( e _ { 1 } ) = \epsilon ^ { - J _ { 6 7 } + J _ { 8 9 } } , \quad R 

( e _ { 2 } ) = \epsilon ^ { J _ { 4 5 } - J _ { 8 9 } } .

WYGIWYS
R ( e _ { 1 } ) = \epsilon ^ { - J _ { 0 } + J _ { 8 } } , \quad R ( e _ 

{ 2 } ) = \epsilon ^ { J _ { 3 } - J _ { 8 } } .

ConvMath
R ( e _ { 1 } ) = \epsilon ^ { - J _ { 0 }  + J _ { 8 9 } } , \quad R ( e 

_ { 2 } ) = \epsilon ^ { I _ { 4 } } - J _ { 8 9 } } .

Errors: highlighted in red

Over parsing rarely happens

Under parsing is common(the
third example)

Future direction: strengthen the
ability to deal with under parsing
problems
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Conclusion

Contribution:

Propose a convolution based model which achieves SOTA results and
much higher speed

Residual encoder to combine high-level and low-level features

Combine multi-layer attention mechanism with the decoder, which solves
the problem of lacking coverage

Future directions:

Evaluate the network on other datasets like handwritten mathematical
expression datasets.

Apply the network to other tasks such as image caption generation,
musical score recognition et al.
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Thanks for listening!
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