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Machine Learning Today

* Breakthroughs in ML using deep Artificial Neural Networks (ANNs) have come at the
expense of massive memory, energy, and time requirements:

* Energy intensive, particularly for “always-on” edge intelligence applications
* Many state-of-the-art solutions are not well suited for time-varying and non-stationary environments

- g
Training a single Al model :
can emit as much carbon © 2
as five carsin their : :
lifetimes = B B 82

Common carbon footprint benchmarks

1000000 2

in Ibs of CO2 equivalent s
100000 1

Roundtrip flight b/w NY and SF (1 T~ 0 e
p flig ( 1.984 g 10000 ~
passenger) - c
1000 s

Human life (avg. 1 year) I 11,023 3 ®
a 100 -

American life (avg. 1 year) 36,156 F
| 3

2

. &

A

US car including fuel (avg. 1 lifetime) 126,000

1
Transformer (213M parameters) w/ neural Hurman Wats Alph 8GO Text hudo Images Video
architecture search 626,155



Neuromorphic Computing: Spiking Neural Networks (SNNs)

e Spiking Neural Networks (SNNs) take inspiration from the dynamic, temporally sparse,
event-driven learning and inference operations of the human brain

* ANNSs to SNNs: From static scalar activation functions to dynamic neuronal models
* Neurons in the brain sense, process, and communicate over time using sparse binary signals (=spikes)

* Probabilistic SNN Models based on Generalized Linear Model (GLM)
* More flexible and enable principled differentiable learning rules
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Multi-Valued Spikes: Beyond Binary Spikes

* Time-encoded data may assign spikes discrete, categorical, values
e e.g., polarity (4, —) for data from neuromorphic cameras

* With standard SNN models, this information is either discarded or encoded by increasing
the number of signals

e e.g., producing a binary signal (spike or not), treating as two separate binary signals

* How to model and train an SNN that can process with multi-valued spikes?
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Probabilistic (GLM) Winner-Take-All SNNs (WTA-SNNs)

e Discrete data can be encoded via one-hot vector

* |t can be processed and produced by Winner-Take-All (WTA) spiking circuit:

* Group of correlated spiking units, with at most one of the spiking units emitting a spike at any given

time
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Training Probabilistic WTA-SNNs

* The visible circuits encode the desired behavior x_ of the network as specified by training data

* The spiking behavior h_; of the hidden circuits is not specified by data
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* Maximum likelihood: max log pg(visible)

Maximize the probability that the model produces the desired outputs for the visible circuits

pg(visiblehidden)
q(hidden)

log pg(visible) = log Xhiqden Po(Visible, hidden) = E;midden) [log

Forward distribution log g(hidden) = thi:hiddenﬁ (hi,t, OsM (ui,t))

We specifically optimize the lower bound (ELBO): L(8) = Yt Y.;.visible H (Xi ¢, Osm (ui,t)) —a - reg



VOWEL: Variational Online learning rule for spiking Winner-takE-alL circuits

* Use an unbiased estimate (via REINFORCE) of the gradient of the bound VgyL(8)

* For visible circuits, we have two-factor rule:
- WTA circuit
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* For hidden circuits, we have three-factor rule:
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Experiments

* Neuromorphic dataset obtained by filming moving MINIST digits displayed on a screen or moving
gestures with a neuromorphic camera

* MNIST-DVS, DVS-Gesture

other gesture

* WTA-SNN
* All WTA circuits consist of two spiking units (for 4+, — signs)
* Consider a generic, non-optimized, network architecture with H fully connected hidden circuits

* Benchmarks: (binary) probabilistic GLM model and deterministic LIF model
* With same number of spiking units (= 2H) and per-sign inputs
e With %2 number of spiking units (= H) with unsigned (discarding the sign) inputs



Results

* MNIST-DVS * DVS-Gesture
* H = 16 hidden circuits (2H hidden spiking * Test accuracy of VOWEL and DECOLLE
units) (deterministic SNN)
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training iterations

« WTA-SNN (C = 2) trained with VOWEL . :
outperforms conventional binary SNN VOWEL can operate with a smaller number

solutions (C = 1) of hidden units and coarser sampling rate

* The capability of WTA circuits to process * The ability to directly distinguish patterns
information encoded both in the spikes’ encoded in the values of the spikes
timings and their signs



Thank you!

Any Questions?
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