Feature Fusion for Online Mutual Knowledge Distillation

Jangho Kim, Minsung Hyun, Inseop Chung, Nojun Kwak kih91.minsung.hyun, jis3613.nojunk@snu.ac.kr

Seoul National University Machine Intelligence Pattern Analysis Lab (MIPAL) http://mipal.snu.ac.kr

Introduction

- Many researches on network architecture that extracts discriminative features.
 - ResNet
 - Wide-ResNet
- New approach : the feature fusion method that can combine different feature maps gained from multiple sub-networks.
- Feature fusion methods have been used in many previous deep learning studies.

Introduction

- DualNet which is feature fusion method trains independent two sub-networks with iterative training.
- This framework combine complementary two feature maps with fused classifier.

Overall process of DualNet

Introduction

- DualNet coordinated two parallel sub-networks and fused the twostream features, directly.
- Directly combining feature maps incurs several challenges:
 - The performance of the sub-networks is significantly lower than the performance of the network that is independently trained with the same architecture. This can also influence the performance of fused classifier
 - Because it directly combines feature maps, it is applicable only when the subnetworks have the same architecture.

Motivation & Contribution

- Motivation
 - Sub-networks can not help fused classifier with positive synergy
 - Only same architecture type can be used
- Contribution
 - Our method, Feature fusion learning (FFL) can improve the accuracy of subnetworks where gives positive synergy to a fused classifier
 - FFL can handle various architecture type
 - FFL can create meaningful feature maps used at computer vision tasks

Method

- Fusion module
 - Combining feature maps from the last layer of each sub-network with convolution operation
 - To reduce computational cost, FFL use Depth-wise and Point-wise convolution
 - Combined feature maps is named as fused feature

Method

- Ensemble knowledge distillation (EKD)
 - Using ensemble logits of sub-networks and knowledge distillation, fusion module can generate meaning feature map with this loss
- Fusion knowledge distillation (FKD)
 - Using fused logits and knowledge distillation, sub-networks can be learned with this loss

MIPALaboratory Machine Intelligence 8 Pottern Analysis

Experiments

• Comparison with Feature Fusion Method

	CIFAR-10		CIFAR-100		
(%)	DualNet FFL		DualNet	FFL	
ResNet-32	6.21±0.20	$5.78 {\pm} 0.13$	27.49±0.31	$25.56 {\pm} 0.32$	
ResNet-56	5.67 ± 0.12	5.26 ± 0.17	25.87 ± 0.29	$23.53 {\pm} 0.25$	
WRN-16-2	5.92 ± 0.16	5.97 ± 0.13	25.71 ± 0.20	24.74 ± 0.31	
WRN-40-2	$4.94{\pm}0.10$	4.6 ± 0.13	23.22 ± 0.25	21.05 ± 0.25	

(a) Top-1 classification error rate of fused classifiers. DualNet outputs results from the average of classifiers and FFL uses fusion module for classification.

	CIFAR-10 DualNet FFL		CIFAR-100		
(%)			DualNet	FFL	
ResNet-32	8.23±0.31	$6.06 {\pm} 0.15$	34.91±1.23	27.06±0.34	
ResNet-56	7.34 ± 0.25	5.58 ± 0.13	32.67 ± 1.14	24.85 ± 0.30	
WRN-16-2	7.53 ± 0.20	6.09 ± 0.09	31.7 ± 1.00	25.72 ± 0.28	
WRN-40-2	6.25 ± 0.14	4.75 ± 0.16	28.4 ± 0.61	$22.06 {\pm} 0.20$	

(b) Top-1 classification error rate of sub-network classifiers.

				CIFAR-100		
case	FM	EKD	FKD	Fused	Sub-network	
A B C D	✓ ★ ✓	√	√ √ √ ★	$\begin{array}{c} 25.56 {\pm} 0.32 \\ 26.1 {\pm} 0.36 \\ 27.03 {\pm} 0.31 \\ 27.29 {\pm} 0.24 \end{array}$	27.06 ± 0.34 27.46 ± 0.31 28.36 ± 0.44 31.04 ± 0.31	

(Ablation study)

Experiments

• Comparison with Knowledge Distillation

	ResNet-32	ResNet-56
ONE	26.64 (26.94±0.21) {26.61*}	24.63 (25.10±0.29)
FFL-S	$26.3 (26.66 \pm 0.21)$	$24.51 \ (24.85 \pm 0.31)$
ONE-E	24.75 (25.19±0.20) {24.63*}	$23.27 (23.59 \pm 0.24)$
FFL	24.31 (24.82±0.33)	23.20 (23.43±0.19)

	Method	Top-1	Top-5
	vanila	26.69	8.58
ResNet-34	ONE	25.61 ± 0.02	7.96 ± 0.02
	FFL-S	$25.58 {\pm} 0.06$	7.95 ± 0.06
	ONE-E	24.48	7.31
	FFL	23.91	7.17

ivet Types			VIL	TTL		
	Net 1	Net 2	Net 1	Net 2	Net 1	Net 2
	ResNet-32 ResNet-56	WRN-16-2 WRN-40-2	$\substack{28.31 \pm 0.28 \\ 26.75 \pm 0.21}$	26.45 ± 0.30 23.33 ± 0.27	$27.06{\pm}0.26 \\ 26.23{\pm}0.30$	25.93 ± 0.30 23.06 ± 0.43

DMI

1

EEI

(DML; different arch)

Not Types

1

(ONE; same arch)

Thank you

• The code is available at the "https://github.com/Jangho-Kim/FFL-pytorch"

