

UNIVERSITÀ DEGLI STUDI DI PADOVA

Enhancing Deep Semantic Segmentation of RGB-D data with Entangled Forest

Matteo Terreran, Elia Bonetto, Stefano Ghidoni

INTELLIGENT AUTONOMOUS SYSTEMS LAB

Semantic segmentation

IAS-LAB

Semantic segmentation consists of a **pixel-wise classification** of the input data according to a given set of classes of interest (e.g. floor, table, bed)

(a) RGB

⁽b) Depth

Contributions

IAS-LAB

Deep learning (DL) architectures

- high-end GPUs
- end-to-end training
- large training data

3D Entangled Forest classifier (3DEF)

- fast and runs on CPU
- hand-crafted features + classification
- less training data than DL

In this work we investigate how to combine the two approaches:

- Analysis of **different configurations to embed hand-crafted features** in a deep learning networks such as FuseNet;
- Study of the **potential of 3DEF hand-crafted features** in DL networks;
- **Possibility to shrink a DL network** without reducing performance by exploiting additional information.

3D Entangled Forest

IAS-LAB

3DEF classifier relies on a preliminary over-segmentation in clusters and the computation of two types of hand-crafted features:

- Unary features, describe cluster information (e.g. color);
- Entangled features, describe relations between clusters to consider also information in the space domain.

3DEF features represent cluster information, not pixels as in FuseNet architecture; to obtain a similar representation we redefined 3DEF features in a 2D space

Configurations

IAS-LAB

Configurations

IAS-LAB

Experimental results

IAS-LAB

Experiments on NYU Depth v2 dataset with 13 and 40 classes mapping:

- Slightly better performance than FuseNet using 3DEF features
- Improved loss function convergence

Configuration		13-classes			40-classes		
		Global acc.	Mean acc.	IoU	Global acc.	Mean acc.	IoU
SF	UN	76.44	67.52	54.93	68.63	47.08	35.72
	ENT	75.19	65.28	52.83	66.69	42.82	32.95
	ENT+UN	76.86	67.63	55.29	68.60	47.95	36.28
OE	UN	76.29	66.81	54.36	68.76	47.24	35.82
	ENT	76.91	67.61	55.21	68.16	44.65	34.05
	ENT+UN	76.56	67.73	55.03	68.76	46.67	35.54
PA	UN	76.50	67.02	54.74	69.02	46.27	36.10
	ENT	76.16	67.31	54.06	67.35	42.88	33.24
	ENT+UN	76.77	67.75	55.27	68.77	47.06	35.89
DF	UN	76.61	67.59	54.94	68.72	46.86	35.86
	ENT	76.17	67.26	54.14	68.13	44.71	34.71
	ENT+UN	76.92	68.21	55.49	69.00	47.64	36.62
FuseNet		76.40	66.93	54.74	68.76	46.42	35.48

Experimental results

IAS-LAB

• Larger improvements considering reduced configurations

Configuration		13-classes			40-classes		
		Global acc.	Mean acc.	IoU	Global acc.	Mean acc.	IoU
	UN	67.92	56.95	43.73	58.73	32.11	23.02
SF	ENT	71.20	60.35	47.79	62.28	36.84	26.51
	ENT+UN	67.83	56.66	43.59	59.04	33.83	24.00
	UN	67.77	56.52	43.46	59.03	32.77	23.34
OE	ENT	70.11	58.42	46.12	60.78	34.44	24.79
	ENT+UN	68.03	57.06	43.80	59.05	33.13	23.71
	UN	67.82	56.31	43.38	58.95	32.68	23.30
PA	ENT	68.38	55.89	43.90	59.68	33.59	23.82
	ENT+UN	68.10	57.11	43.87	59.12	33.14	23.53
DF	UN	67.82	56.36	43.47	59.02	32.71	23.40
	ENT	68.02	54.98	43.10	59.52	32.91	23.44
	ENT+UN	67.76	56.62	43.43	59.31	32.69	23.50
FuscNet reduced		68.01	56.50	43.70	59.02	33.00	23.42

Conclusions

- We investigate how to integrate hand-crafted features in a deep learning model proposing different fusion strategies;
- Larger improvements when considering reduced configurations;
- Entangled features can be used to obtain lighter state-of-the-art models, with lower computational cost.

Network	0	riginal	Reduced		
	Param	Epoch time	Param	Epoch time	
Sparse Fusion	58.908	125	6.968	83	
Only Encoding	58.908	125	6.968	83	
Parallel AE	73.591	143	8.666	94	
Direct Fusion	44.224	104	5.269	70	
FuseNet	44.173	90	5.218	60	

Thanks for your attention