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Signatures as a natural feature set

A sequence of (input,output) pair, denoted by {(X;, y;) };, we make inference f
between input and output such that

f(Xi) =~ yi.

Signatures of path (data stream) as features:

e Determining solutions for controlled differential equations [Chen, 1958],
[Hambly&Lyons, 2010], [Boedihardjo et al, 2016].

Invariance under time reparameterisation.
Unwrapping nonliearity.

Fixed dimension under length variations, vectorisation.
Faithful representation: tree-like equivalence.
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Definition: signatures
Consider time-dependent path X : [a, b] — R%. Now for any t € [a, b] and a fixed

ordered multi-index collection (i1, ..., i), with k € Nand j; € [d] for
J € K] :={1,...,k}, define the coordinate iterated integral by

S(X);;'“’"k ::/ / dxit dX[ri 1)
a<te<t a<ty <to

The signature of a path X is the infinite collection of all iterated integrals of X:

SX)ab = (1,505 -+ -+ SK)as SK)gp» SKaps -+ )- ()
The finite collection of all terms S(X)‘;’;J'“’[k with the multi-index of fixed length k is
termed as the kth level of the signature. The truncated signature up to the pth level is
denoted by |S(X)a,b]p-

Only capturing the effect of pattern change and not ones depending on the absolute
position.

Signature
Path X g:> Incremental effects of path X.
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@ Visibility transformation
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For continuous path of finite length
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Main property

Theorem

Given X and a multi-index collection Jwithd + 1 ¢ J. Define J~ := (d + 1|J) and
Jt = (J|d+ 1), where d + 1 is prefixed (resp. postfixed) to J on the left(resp. right). Then

S(’YI(X))J_ = Sied#—leh -G S(’YI(X))J |]|' HX €jy = €jj5 Bd+1s 3)
=Y

where S}, is the corresponding coefficient of S(X). Similarly, for the T-visibility
transformation, we have

|J|+1
|J|| H 1ed+1ell IV (4)

jed

.
S(r(X))" = Sxep - - €y ear1, S(yr (X))

Signature
Path X y; Path X g—:> Positional and incremental effects of path X
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discrete VT

Given streamed data X = (X1,...,%X,), X; € RY

r

piecewise .
data X = path X = signatures

linear in?erpolation

Python packages
X Yy :Dj g

data signatures
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discrete VT

Given streamed data X = (X1,...,%X,), X; € RY

r

piecewise .
dataX = _ path X = signatures
linear interpolation

Python k
X y :pgc ages

data signatures

One needs a discrete transform such that

i _ Python packages
Xd|5(;®eT % y :p:> g

data data signatures

and ) )
- iecewise -
dataX p' = ~ pathX

linear interpolation
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Discrete VT

Take a discrete data with two 2-dimensional observations [1,2]";[3, 4] for
example, the discrete I-visibility transformation (IVT) would give

0 ) L)

and the discrete T-visibility transformation (TVT) would give
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Discrete VT

Take a discrete data with two 2-dimensional observations [1,2]";[3, 4] for
example, the discrete I-visibility transformation (IVT) would give

0= ) L)

and the discrete T-visibility transformation (TVT) would give
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Application: character trajectories dataset

® The data [Williams et al, 2006] consists of 2858 instances for 20 different characters, and
was captured using a WACOM tablet at 200Hz. Each character sample is a 3-dimensional
pen tip velocity trajectory, namely (x, y, p). The original handwriting data contains training
set (50%) and testing set (50%).

e 4 Different features: truncated signatures with the lead lag transform (LLT), truncated
signatures with LLT and being prefixed by the explicit initial position (LLT+IP), and truncated
signatures with LLT and the discrete I-visibility transformation (LLT+IVT). We also extracted
truncated signature features with LLT and IVT on the trajectory, namely the (x, y) path
(LLT+IVT on (x,y)). In the experiment, the signature features were truncated to levels
{2,3,4,5,6}.

® lightGBM Classifer: hyperparameter tuning implemented via grid search with cross
validation.
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Application: character trajectories dataset

(a) Signature level VS average
accuracy with standard deviation.

)maths

e *
// T M
[ retrrotveste
et
A
x10° -
5 ox0 &
s 4
S s
& —i— LT+IVT+SF < /' —— LLT+IVT+SF
v LLT+IVT+SF on (x.y) Bx107 (‘_ LLT+IVT+SF on (xy)
—e- LT+SF+IP —e- LT4+SF+IP
L me LLT+SF i ~me LUT+SF
2 3 4 5 6 10t 102 103
Time cost (s}

Signature level

(b) CPU time VS average accuracy
(log-log scale).

Method Accuracy
¢(O,HMM)+SVM [Perina et al, 2009] 92.91%
TK [Tsuda et al, 2002] 93.67%
LLT+IVT+SF on (x, y) 97.27%

SDD [grabocka et al, 2016] 98.00%
MCDS [iosifidis et al, 2012] 98.25%
LLT+IVT+SF 98.54%
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Gesture classification: Chalearn 2013 data

e The Chalearn 2013 multi-modal gesture dataset [Escalera et al,2013] contains
23 hours of Kinect data of 27 subjects performing 20 Italian gestures.

e Liao et al [Liao et al, 2019] proposed a log-signature-based recurrent neural
network model.
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Gesture classification: Chalearn 2013 data

Modified PT-Logsig-RNN: adding a visibility transformation layer to architecture of
PT-Logsig-RNN Model.

Table: Comparison of different methods on the Chalearn 2013 data.

Method Accuracy

Deep LSTM [Shahroudy et al, 2016] 87.10%
Two-stream LSTM [Wang et al, 2017] 91.70%
ST-LSTM + Trust Gate [Liu et al, 2017] 92.00%
Three-stream net TTM [Li et al, 2019] 92.08%
PT-Logsig-RNN [Liao et al, 2019] 92.21%
Modified PT-Logsig-RNN 92.89%
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Conclusion

To capture the informative information from streamed data for learning tasks,
we explore a transformation that encodes the effects on the absolute position
of streamed data into signature features with theoretical justifications. The
enhanced feature is unified, theoretical-backed, and simple to implement
with. It is superior to many benchmark methods that require handy data
preparation and implementation of complicated algorithms in applications
when absolute position of the data is intrusive.
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