
Javier García López.

javier.jarcia.l@upc.edu

Francesc Moreno-Noguer

fmoreno@iri.upc.edu

Antonio Agudo

antonio.agudo@upc.edu

Paper presented at the 25th. International Conference on Pattern
Recognition

Milano, IT. Jan 10-15, 2021.

E-DNAS: Differentiable Neural Architecture Search for

Embedded Systems

ICPR 2020 paper #1294

mailto:Javier.Garcia.l@upc.edu
mailto:fmoreno@iri.upc.edu
mailto:antonio.agudo@upc.edu

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

ICPR 2020 #1294

Current problem:

Current manual neural network design approaches prevent the usage of

Deep Learning-based application on many fields since it is a hard and

time-consuming.

Newly Neural Architecture Search (NAS) methods provide good response

to this problem, however they are still very time consuming and not very

suited for big datasets such as ImageNet or COCO.

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

ICPR 2020 #1294

Solution:

Convert the design process into an optimization problem that can be

minimized through SGD (Stochastic Gradient Descent). Optimization

function attends to two main aspects: Latency and FLOPs of the candidate

architecture.

Number of operations is minimized through the usage of Meta-Kernels that

merge several convolutional operations → Additivity Property

K1* I + K2*I = (K1 + K2)*I

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

ICPR 2020 #1294

First step: separable depthwise convolution with a

11 x 11 kernel applied on the input image that leads

to a reduced parameter size and computational cost

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

ICPR 2020 #1294

Second step: Meta-kernels as a sum of 3 x 3, 5 x 5

and 7 x 7 filters applied on the output feature maps

of the first step (Additivity property of the

convolution)

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

ICPR 2020 #1294

The search space:

we define the search space of each output x(j) as the combination of

operations o(i,j) applied on inputs x(i), assuming the inputs as the outputs of

the previous two layers

o(i,j) is the set of candidate operations (e.g. pooling, dilated convolutions,

etc.). To make the search space differentiable, we approximate each

operation and formulate it as:

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

ICPR 2020 #1294

Through this, and taking into consideration that any operation is a

combination of and Input (I) and a Kernel (K) or filter

the proposed search network algorithm aims to learn jointly the architecture

“α” and the weights “w” by optimizing the following loss function.

where CE(a;wa) is the cross-entropy loss of the network candidate a with

weights wa and LAT(a) is the measured latency of network candidate a in

microseconds

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

ICPR 2020 #1294

The feedback blocks:

To shorten the search time, we propose the implementation of a feedback-

block during training, which is the weighted sum of the learned meta-kernels

being trained in parallel.

On each iteration the closer kernel to the "expected" one has more

influence.

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

ICPR 2020 #1294

The search method:

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

ICPR 2020 #1294

Experiments:

We have conducted experiments on the commonly used ImageNet and

PascalVOC benchmarks.

We have trained the models using 8 GPU NVIDIA Tesla V100. Several

implementation tricks have been implemented to improve the training

process, such as the following:

- Random crop of a rectangular region.

- Normalize RGB channels.

- Randomly sample an image and decode it into 32-bit floating point raw

pixel values in [0,255].

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

ICPR 2020 #1294

Experiments:

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

ICPR 2020 #1294

Conclusions:

1. We propose a two-step pipeline that learns different meta-kernel sizes,

able to treat different resolution patterns to create automatic neural

networks that can classify images.

2. One of the main contributions is the proposed circular feedback on

each iteration to speed up the process

3. We test out method with commercial hardware used in the automotive

industry obtaining good results in terms of Accuracy and search time

