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Current problem:

Current manual neural network design approaches prevent the usage of

Deep Learning-based application on many fields since it is a hard and

time-consuming.

Newly Neural Architecture Search (NAS) methods provide good response

to this problem, however they are still very time consuming and not very

suited for big datasets such as ImageNet or COCO.
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Solution:

Convert the design process into an optimization problem that can be

minimized through SGD (Stochastic Gradient Descent). Optimization

function attends to two main aspects: Latency and FLOPs of the candidate

architecture.

Number of operations is minimized through the usage of Meta-Kernels that

merge several convolutional operations → Additivity Property

K1* I + K2*I = (K1 + K2)*I
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First step: separable depthwise convolution with a

11 x 11 kernel applied on the input image that leads

to a reduced parameter size and computational cost
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Second step: Meta-kernels as a sum of 3 x 3, 5 x 5

and 7 x 7 filters applied on the output feature maps

of the first step (Additivity property of the

convolution)
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The search space:

we define the search space of each output x(j) as the combination of 

operations o(i,j) applied on inputs x(i), assuming the inputs as the outputs of 

the previous two layers

o(i,j) is the set of candidate operations (e.g. pooling, dilated convolutions, 

etc.). To make the search space differentiable, we approximate each 

operation and formulate it as:
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Through this, and taking into consideration that any operation is a 

combination of and Input (I) and a Kernel (K) or filter

the proposed search network algorithm aims to learn jointly the architecture 

“α” and the weights “w” by optimizing the following loss function.

where CE(a;wa) is the cross-entropy loss of the network candidate a with 

weights wa and LAT(a) is the measured latency of network candidate a in 

microseconds
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The feedback blocks:

To shorten the search time, we propose the implementation of a feedback-

block during training, which is the weighted sum of the learned meta-kernels 

being trained in parallel.

On each iteration the closer kernel to the "expected" one has more 

influence.
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The search method:
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Experiments:

We have conducted experiments on the commonly used ImageNet and 

PascalVOC benchmarks.

We have trained the models using 8 GPU NVIDIA Tesla V100. Several 

implementation tricks have been implemented to improve the training 

process, such as the following: 

- Random crop of a rectangular region.

- Normalize RGB channels.

- Randomly sample an image and decode it into 32-bit floating point raw 

pixel values in [0,255].
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Experiments:
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Conclusions:

1. We propose a two-step pipeline that learns different meta-kernel sizes, 

able to treat different resolution patterns to create automatic neural 

networks that can classify images.

2. One of the main contributions is the proposed circular feedback on 

each iteration to speed up the process

3. We test out method with commercial hardware used in the automotive 

industry obtaining good results in terms of Accuracy and search time


