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Motivation & Problem Formulation

• Recommender Systems are EVERYWHERE!

• Common approach: Collaborative Filtering (CF)
• Matrix-Factorization-based approaches

• Temporal CF (TCF):
• Recurrent Neural Nets (RNNs)

• Recently…GNNs!
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https://medium.com/towards-artificial-
intelligence/diversity-recommender-systems-in-
machine-learning-and-ai-a56849c5a256



TG-MC Architecture
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Experimental Results
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Table II: RMSE scores obtained by our method
and reference static CF methods on the Netflix 
and MovieLens 1M datasts.

Table III: Comparison of our method and reference TCF 
methods on the Netflix and MovieLens 1M datasets.



CONCLUSION

• Method for Temporal Collaborative Filtering (TCF)

• Combines
1. GNNs → learns/captures the latent user and item representations

2. RNNs → models the temporal dynamics (trajectories of these representations 
across time) in the TCF setting

3. increased data sparsity in the TCF setting → use an accumulative data 
representation technique

• Comprehensive experiments on the Netflix and MovieLens 1M datasets  
justified the benefits of each of the proposed components (1, 2 and 3)

• The experimental results also showed that our method yielded favorable 
performance compared to several state-of the-art TCF models.
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Thanks for listening!
Questions are very welcome


