Prior Knowledge about Attributes:
Learning a More Effective
Potential Space for Zero-Shot
Recognition

Chunlai Chai

Zhejiang Gongshang University Hangzhou, China ccl@mail.zjgsu.edu.cn
Yukuan Lou

Zhejiang Gongshang University Hangzhou, China louyukuan@gmail.com
Shijin Zhang

Zhejiang Gongshang University Hangzhou, China zhangshijin0304@gmail.com
Ming Hua
Oakland University State of Michigan, US ming@oakland.edu



1. INTRODUCTION

Zero-shot learning (ZSL) aims to recognize
unseen classes accurately by learning seen
classes and known attributes, but correlations in
attributes were ignored by previous study which
lead to classification results confused. To solve
this problem, we build an Attribute Correlation
Potential Space Generation (ACPSG) model
which uses a graph convolution network and
attribute correlation to generate a more
discriminating potential space. Combining
potential discrimination space and user-defined
attribute space, we can better classify unseen
classes. Our approach outperforms some existing
state-of-the-art methods on several benchmark
datasets, whether it is conventional ZSL or
generalized ZSL.
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An illustrative diagram of semantic attributes
correlation. It can be seen from the figure that
if an animal has a certain attribute, it is likely to
also have an attribute related to it; otherwise, it
is likely not to have an attribute not related to it.



2. RELATED WORK

e A. Zero-Shot Learning

According to previous research, there are three types of models in ZSL: (1) Class-
Inductive Instance-Inductive setting, it means training the model using only the trainable
instances and the set of seen labels, (2) Class-Transductive Instancelnductive setting,
This means to train models using trainable instances and a set of seen labels, as well as
a set of unseen labels. (3) Class-Transductive Instance-Inductive setting, it means to
train the model using trainable instances and seen label sets, as well as unseen label

sets and corresponding unlabeled test sets.



e B. Graph Neural Networks

Graph convolution was first proposed to extend CNN to graphs and to directly process
graph-type data. CNN generally acts on Euclidean space, and cannot directly act on
nonEuclidean space. Many important data sets are stored in the form of graphs in reality,
such as social network information, knowledge map, protein network, the World Wide Web
and so on. The form of these graph networks is not like an image. It is composed of a
neatly arranged matrix but is unstructured information. CNN cannot be used for feature
extraction, but graph convolution can be applied here.

The core of graph convolution is that each node in the graph is affected by neighbor
nodes and further points at any time, so it constantly changes its state until the final
balance. The nodes closer to the target node have a greater influence on the target node.
GCN has subtly designed a method for extracting features from graph data so that we can
use these features to perform node classification, graph classification, and edge
prediction on graph data. It is versatile that we can get embedded representations of
graphs in this way.



e C. AutoEncoder

An autoencoder is an unsupervised neural network model. It can learn the hidden
features of the input data, which can be called encoding. At the same time, the new input
features can be used to reconstruct the original input data, which is called decoding.
Intuitively, auto-encoders can be used to reduce the feature dimension is similar to
principal component analysis, but its performance is stronger than PCA. This is because
neural network models can extract more efficient new features. In addition to feature
dimensionality reduction, new features learned by the autoencoder can be input into a
supervised learning model, so the autoencoder can be used as a feature extractor. As an
unsupervised learning model, autoencoders can also be used to generate new data that is
different from the training samples, such as variational autoencoders.



3. OUR MODEL

e We solve this problem by graph convolutional networks(GCN) ,
GCN uses the correlation between class nodes and semantic

attribute nodes to generate a latent space to help identify
unseen classes. Before this research, the bipartite graph has

been used to represent the correlation between ZSL nodes, as it
is shown in right figure, but the bipartite graph ignores the

correlation in semantic attribute nodes. We propose a new graph

model to replace the bipartite graph, covering the correlation
between semantic attribute nodes, thus generating better i //X\\ §{ i /N e
potential space. A new ZSL framework called Attribute

Correlation Potential Space Generation (ACPSG) model consists

of two parts, the first part generates latent discrimination
. . Class Attribute Class Attribute

attribute space from GCN, the second part maps the visual

features of the unseen classes into userdefined attribute space

and latent discrimination attribute space through an

autoencoder . In the end, combining multiple spaces, we can

consider both the UA and LA spaces to perform ZSL prediction.
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Overall illustration of the framework proposed in this paper. At the first stage, we added the
correlation between attributes as a prior knowledge, using a graph convolution model to
generate a latent discernment space. In the second stage, we use autoencoders to map
visual features into multiple spaces and learn a reliable decoder.



4. EXPERIMENTS

e Conventional Zero-Shot Learning

we evaluated our model in detail on three benchmark datasets (AwA2, CUB, aPY).
Experimental results show that model performs well and outperforms some advanced
models in some results.

THE EXPERIMENTAL RESULTS ON THE CONVENTIONAL ZSL. HERE THE PS AND THE SS SEPARATELY REFER TO THE PROPOSED
SPLIT AND THE STANDARD SPLIT. THE BEST RESULT IS MARKED IN BOLD FONT. NONE MEANS NO POTENTIAL DISCERNMENT
SPACE IS USED. §— > V MEANS USE EQ. 18 TO CALCULATE ACCURACY, V— > S MEANS USE EQ. 17 TO CALCULATE ACCURACY.

AwA2 CUB aPY

Method 5SS PS SS PS 35 PS
DAP [41] 587 6.1 375 400 350 338
CONSE [42] 679 445 367 343 250 269
ALE [6] 803 625 532 549 i 39.7
ESZSL [10] 756  58.6 551 539 344 383
SIE [7] 695 619 553 539 320 329
SYNC [43] 712 46.6 541 556 39.7 239
SAE [23] 802  54.1 334 333 55.4 83
SE-ZSL [16] 0.8 692 603 596 ) )
7SKL [28] ) 70.2 ) 57.1 ; 45.3
F-CLSWGAN [17] ; ) ; 61.5 ] i
DCN [44] . ; 556 56.2 . 436
PSRZSL [45] . 63.8 " 56.0 ) 8.4
None (5->V) 781 57.0 592 586 A7 234
ACPSG (S->V) 795  66.1 613 5.1 451 273
None (V->S) 798 489 581 574 413 244
ACPSG (V->S5) 82.8 498 62.7 60.4 472 275




e Generalized Zero-Shot Learning

we tested our model on three benchmark datasets, it shows a good performance on
AwA2 and CUB, But not so good on aPY, we guessed that it was caused by the
insufficient fine-grained of the learned distribution. But in general, our model has good
generalization capability.

THE EXPERIMENTAL RESULTS ON THE GENERALIZED ZSL. S REPRESENTS THE ACCURACY OF SEEN CLASSES. U REPRESENTS
THE ACCURACY OF UNSEEN CLASSES. H IS THE HARMONIC MEAN. THE BEST RESULT IS MARKED IN BOLD FONT.

AwA2 CUB aPY

Rehos T U H S U H S U H
CONSE [42] 90.6 05 1.0 T2.2 1.6 3.1 91.2 0.0 00
CMT [46] 9.0 05 1.0 498 72 126 742 109 19.0
SIE [7] 739 80 144 502 235 336 557 37 69
ESZSL [10] 778 59 110 63.8 12,6 21.0 701 24 46
SYNC [43] 905 100 18.0 709 115 198 663 74 133
SAE [23] $22 1.1 22 540 78 136 809 04 09
LATEM [47] 773 115 200 573 152 24.0 730 01 02
ALE [6] 8§18 140 239 62.8 237 344 737 46 87
7SKL (28] $27 189 308 528 216 306 762 105 18.5
PSRZSL [45] 738 207 323 543 246 339 514 135 214
DCN [44] - - - 37.0 25.5 30.2 75.0 14.2 23.9
QOurs 825 23.1 36.1 71.3 250 37.0 76.3 8.8 158




5. CONCLUSION

In this paper, we put forward the concept of attribute correlation in ZSL, and explore the correlation in
attribute nodes, it makes attribute nodes are interrelated rather than isolated. To use attribute correlation as a
prior knowledge of ZSL, we propose the ACPSG model to make full use of the correlation between nodes.
Specifically, our model learns multiple spaces that are more discernible than the original space. Using this
method, we integrated attribute correlation into the ZSL model successfully. Besides, we have done a lot of
experiments to verify the effectiveness of our model.

In essence, the graph-based approach aims to model the interaction in entities. In our model, classes and
attributes are regarded as different nodes in the graph, and edges are used to describe the correlation between
the nodes so that the structural information between the various nodes is fully utilized. From all information we
discussed, we use the graph convolutional networks to generate a more effective space for potential
discrimination.

In reality, we combine the latent discriminating space and the user-defined space into multiple spaces. We
train the samples so that the visual features of the samples are mapped into multiple spaces, and the same
class is clustered together and distributed reasonably.

There are still many challenges in zero-sample learning. In the future, we will continue to develop ZSL models
that based on graphs and attributes to give model better performance and generalization.



