Better Prior Knowledge Improves Human-Pose-Based Extrinsic Camera Calibration Olivier Moliner 1,2 Sangxia Huang 2 Kalle Åström 1 ¹Lund University, Sweden ²Sony R&D Center Lund, Sweden ### **Motivation** - Accurate extrinsic calibration of wide baseline multi-camera systems with classical Structure-from-Motion methods requires special calibration equipment and trained operators. - This is costly and time-consuming, and limits the ease of adoption of multi-camera 3D scene analysis technologies. #### **Prior work** - Use human pose estimation models to establish point correspondences, thus removing the need for any special equipment. - **Challenge:** human pose estimation algorithms produce much less accurate feature points compared to patch-based methods. #### **Our Contribution** - A robust reprojection loss more suitable for camera calibration with human poses. - We introduce a 3D-human-pose likelihood model to the objective function of bundle adjustment. ## Method - 2d human pose estimation. - Initial calibration - Bundle adjustment $$E = E_{rep} + E_{motion} + E_{limb} + E_{KCS}$$ $$E = E_{rep} + E_{motion} + E_{limb} + E_{KCS}$$ ## E_{rep} Robust Reprojection Error $$E_{rep} = \frac{1}{\sum_{i,j,t} w_{ijt}} \sum_{i,j,t} w_{ijt} L(u_{ijt}, \pi_{\mathbf{i}}(\mathbf{U_{jt}})),$$ where $L(\cdot,\cdot)$ is the Huber loss function, and the weights w_{ijt} depend on the joint detection scores and the distances between the joints and the cameras. $$E = E_{rep} + E_{motion} + E_{limb} + E_{KCS}$$ ## E_{motion} Motion prior - the l_2 -norm of the fourth-order derivative of the joint positions - encourages smooth joint trajectories while accounting for complex human motion $$E = E_{rep} + E_{motion} + E_{limb} + E_{KCS}$$ ## E_{limb} Constant Limb Length Constraint • enforces the reconstructed limb lengths to stay constant throughout the whole sequence. $$E = E_{rep} + E_{motion} + E_{limb} + E_{KCS}$$ ## E_{KCS} Body Pose Prior - average likelihood of the 3D human poses, given by a PCA model fitted on the Human 3.6M dataset. - encourages the reconstruction of plausible human poses ## **Datasets** - Human 3.6M - CMU Panoptic - Soccer Juggling and Sword Swing sequences # **Comparison to previous work** | | Puwe | in et al.¹ | Proposed Solution | | | | |--------|------|------------|-------------------|------|--|--| | | Pos. | Ang. | Pos. | Ang. | | | | Soccer | 5.0 | 1.0 | 1.7 | 0.4 | | | | Sword | 5.8 | 1.0 | 0.9 | 0.4 | | | ¹Jens Puwein et al. "Joint Camera Pose Estimation and 3D Human Pose Estimation in a Multi-camera Setup". In: Computer Vision – ACCV 2014. Springer International Publishing, Nov. 2014, pp. 473–487. # **Ablation study** | | | | F | | H36M W | 36M Walking H3 | | H36M WalkTogether | | Dance | | Soccer | | Sword | | |----|------------|-------------|-------------------|-------|-------------------|-----------------|-----------------|-------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|--| | ID | Reproj. | Motion | KCS | Limb | Pos. | Ang. | | | 0 | Initial ca | libration | | | $ 4.41 \pm 2.66 $ | 0.54 ± 0.20 | 5.81 ± 3.25 | 0.67 ± 0.34 | 5.56 ± 1.21 | 0.78 ± 0.24 | 13.84 ± 3.86 | 3.52 ± 1.20 | 19.86 ± 2.48 | 4.21 ± 0.45 | | | 1 | | | | | 4.87 ± 1.50 | 0.60 ± 0.15 | 4.11 ± 1.52 | 0.53 ± 0.20 | 3.89 ± 0.36 | 0.54 ± 0.03 | 3.47 ± 0.05 | 0.60 ± 0.01 | 2.46 ± 0.12 | 1.20 ± 0.00 | | | 2 | ✓ | | | | 2.04 ± 0.77 | 0.31 ± 0.09 | 2.88 ± 2.08 | 0.36 ± 0.22 | 4.17 ± 0.51 | 0.49 ± 0.16 | 1.87 ± 0.09 | 0.47 ± 0.01 | 1.10 ± 0.12 | 0.38 ± 0.02 | | | 3 | ✓ | ✓ | | | 2.04 ± 0.77 | 0.31 ± 0.09 | 2.84 ± 2.00 | 0.35 ± 0.21 | 4.05 ± 0.44 | 0.46 ± 0.14 | 2.04 ± 0.14 | 0.49 ± 0.02 | 1.09 ± 0.11 | 0.38 ± 0.02 | | | 4 | ✓ | | ✓ | | 1.88 ± 0.71 | 0.29 ± 0.09 | 2.60 ± 1.85 | 0.33 ± 0.19 | 4.04 ± 0.44 | 0.47 ± 0.15 | 2.10 ± 0.11 | 0.49 ± 0.02 | 1.00 ± 0.08 | 0.37 ± 0.02 | | | 5 | ✓ | | | ✓ | 2.00 ± 0.76 | 0.31 ± 0.09 | 2.85 ± 2.32 | 0.37 ± 0.25 | 4.09 ± 0.45 | 0.46 ± 0.14 | 1.44 ± 0.09 | 0.43 ± 0.02 | 0.89 ± 0.09 | 0.38 ± 0.01 | | | 6 | ✓ | ✓ | | ✓ | 1.96 ± 0.74 | 0.30 ± 0.09 | 2.81 ± 2.25 | 0.36 ± 0.24 | 4.01 ± 0.40 | 0.45 ± 0.13 | 1.80 ± 0.12 | 0.48 ± 0.02 | 0.89 ± 0.08 | 0.38 ± 0.01 | | | 7 | | ✓ | ✓ | ✓ | 4.36 ± 1.07 | 0.53 ± 0.11 | 4.21 ± 1.62 | 0.52 ± 0.20 | 4.13 ± 0.53 | 0.51 ± 0.11 | 2.16 ± 0.24 | 0.70 ± 0.02 | 2.44 ± 0.12 | 1.00 ± 0.01 | | | 8 | ✓ | ✓ | ✓ | ✓ | 1.89 ± 0.72 | 0.29 ± 0.09 | 2.66 ± 2.08 | 0.34 ± 0.22 | 4.02 ± 0.42 | 0.45 ± 0.14 | 1.66 ± 0.12 | 0.44 ± 0.02 | 0.86 ± 0.05 | 0.38 ± 0.01 | | | 9 | Plain va | nilla BA wi | ith θ_{ba} | = 0.7 | 2.68 ± 0.79 | 0.33 ± 0.09 | 2.81 ± 1.17 | 0.35 ± 0.13 | 4.16 ± 0.65 | 0.46 ± 0.09 | 2.62 ± 0.09 | 0.69 ± 0.01 | 1.32 ± 0.02 | 0.91 ± 0.00 | | | 10 | Our solu | ıtion with | $\theta_{ba} = 0$ |).7 | 2.00 ± 0.76 | 0.31 ± 0.09 | 2.69 ± 2.09 | 0.35 ± 0.22 | 4.03 ± 0.46 | 0.46 ± 0.15 | 1.50 ± 0.10 | 0.42 ± 0.02 | 0.96 ± 0.07 | 0.39 ± 0.02 | | ## Conclusion - We introduced several ideas in this paper and achieved improved accuracy for extrinsic camera calibration using human body joints. - We showed that robust loss functions and relevant prior models are effective in handling errors in human body joint detection.