Better Prior Knowledge Improves Human-Pose-Based Extrinsic Camera Calibration

Olivier Moliner 1,2 Sangxia Huang 2 Kalle Åström 1

¹Lund University, Sweden ²Sony R&D Center Lund, Sweden

Motivation

- Accurate extrinsic calibration of wide baseline multi-camera systems with classical Structure-from-Motion methods requires special calibration equipment and trained operators.
- This is costly and time-consuming, and limits the ease of adoption of multi-camera 3D scene analysis technologies.

Prior work

- Use human pose estimation models to establish point correspondences, thus removing the need for any special equipment.
- **Challenge:** human pose estimation algorithms produce much less accurate feature points compared to patch-based methods.

Our Contribution

- A robust reprojection loss more suitable for camera calibration with human poses.
- We introduce a 3D-human-pose likelihood model to the objective function of bundle adjustment.

Method

- 2d human pose estimation.
- Initial calibration
- Bundle adjustment

$$E = E_{rep} + E_{motion} + E_{limb} + E_{KCS}$$

$$E = E_{rep} + E_{motion} + E_{limb} + E_{KCS}$$

E_{rep} Robust Reprojection Error

$$E_{rep} = \frac{1}{\sum_{i,j,t} w_{ijt}} \sum_{i,j,t} w_{ijt} L(u_{ijt}, \pi_{\mathbf{i}}(\mathbf{U_{jt}})),$$

where $L(\cdot,\cdot)$ is the Huber loss function, and the weights w_{ijt} depend on the joint detection scores and the distances between the joints and the cameras.

$$E = E_{rep} + E_{motion} + E_{limb} + E_{KCS}$$

E_{motion} Motion prior

- the l_2 -norm of the fourth-order derivative of the joint positions
- encourages smooth joint trajectories while accounting for complex human motion

$$E = E_{rep} + E_{motion} + E_{limb} + E_{KCS}$$

E_{limb} Constant Limb Length Constraint

• enforces the reconstructed limb lengths to stay constant throughout the whole sequence.

$$E = E_{rep} + E_{motion} + E_{limb} + E_{KCS}$$

E_{KCS} Body Pose Prior

- average likelihood of the 3D human poses, given by a PCA model fitted on the Human 3.6M dataset.
- encourages the reconstruction of plausible human poses

Datasets

- Human 3.6M
- CMU Panoptic
- Soccer Juggling and Sword Swing sequences

Comparison to previous work

	Puwe	in et al.¹	Proposed Solution			
	Pos.	Ang.	Pos.	Ang.		
Soccer	5.0	1.0	1.7	0.4		
Sword	5.8	1.0	0.9	0.4		

¹Jens Puwein et al. "Joint Camera Pose Estimation and 3D Human Pose Estimation in a Multi-camera Setup". In: Computer Vision – ACCV 2014. Springer International Publishing, Nov. 2014, pp. 473–487.

Ablation study

			F		H36M W	36M Walking H3		H36M WalkTogether		Dance		Soccer		Sword	
ID	Reproj.	Motion	KCS	Limb	Pos.	Ang.	Pos.	Ang.	Pos.	Ang.	Pos.	Ang.	Pos.	Ang.	
0	Initial ca	libration			$ 4.41 \pm 2.66 $	0.54 ± 0.20	5.81 ± 3.25	0.67 ± 0.34	5.56 ± 1.21	0.78 ± 0.24	13.84 ± 3.86	3.52 ± 1.20	19.86 ± 2.48	4.21 ± 0.45	
1					4.87 ± 1.50	0.60 ± 0.15	4.11 ± 1.52	0.53 ± 0.20	3.89 ± 0.36	0.54 ± 0.03	3.47 ± 0.05	0.60 ± 0.01	2.46 ± 0.12	1.20 ± 0.00	
2	✓				2.04 ± 0.77	0.31 ± 0.09	2.88 ± 2.08	0.36 ± 0.22	4.17 ± 0.51	0.49 ± 0.16	1.87 ± 0.09	0.47 ± 0.01	1.10 ± 0.12	0.38 ± 0.02	
3	✓	✓			2.04 ± 0.77	0.31 ± 0.09	2.84 ± 2.00	0.35 ± 0.21	4.05 ± 0.44	0.46 ± 0.14	2.04 ± 0.14	0.49 ± 0.02	1.09 ± 0.11	0.38 ± 0.02	
4	✓		✓		1.88 ± 0.71	0.29 ± 0.09	2.60 ± 1.85	0.33 ± 0.19	4.04 ± 0.44	0.47 ± 0.15	2.10 ± 0.11	0.49 ± 0.02	1.00 ± 0.08	0.37 ± 0.02	
5	✓			✓	2.00 ± 0.76	0.31 ± 0.09	2.85 ± 2.32	0.37 ± 0.25	4.09 ± 0.45	0.46 ± 0.14	1.44 ± 0.09	0.43 ± 0.02	0.89 ± 0.09	0.38 ± 0.01	
6	✓	✓		✓	1.96 ± 0.74	0.30 ± 0.09	2.81 ± 2.25	0.36 ± 0.24	4.01 ± 0.40	0.45 ± 0.13	1.80 ± 0.12	0.48 ± 0.02	0.89 ± 0.08	0.38 ± 0.01	
7		✓	✓	✓	4.36 ± 1.07	0.53 ± 0.11	4.21 ± 1.62	0.52 ± 0.20	4.13 ± 0.53	0.51 ± 0.11	2.16 ± 0.24	0.70 ± 0.02	2.44 ± 0.12	1.00 ± 0.01	
8	✓	✓	✓	✓	1.89 ± 0.72	0.29 ± 0.09	2.66 ± 2.08	0.34 ± 0.22	4.02 ± 0.42	0.45 ± 0.14	1.66 ± 0.12	0.44 ± 0.02	0.86 ± 0.05	0.38 ± 0.01	
9	Plain va	nilla BA wi	ith θ_{ba}	= 0.7	2.68 ± 0.79	0.33 ± 0.09	2.81 ± 1.17	0.35 ± 0.13	4.16 ± 0.65	0.46 ± 0.09	2.62 ± 0.09	0.69 ± 0.01	1.32 ± 0.02	0.91 ± 0.00	
10	Our solu	ıtion with	$\theta_{ba} = 0$).7	2.00 ± 0.76	0.31 ± 0.09	2.69 ± 2.09	0.35 ± 0.22	4.03 ± 0.46	0.46 ± 0.15	1.50 ± 0.10	0.42 ± 0.02	0.96 ± 0.07	0.39 ± 0.02	

Conclusion

- We introduced several ideas in this paper and achieved improved accuracy for extrinsic camera calibration using human body joints.
- We showed that robust loss functions and relevant prior models are effective in handling errors in human body joint detection.