Modeling Extent-of-Texture Information for Ground Terrain Recognition

Shuvozit Ghose^a, Pinaki Nath Chowdhury^b, Partha Pratim Roy^c, Umapada Pal^b

^aInstitute of Engineering and Management, Kolkata, India. ^bIndian Statistical Institute, Kolkata, India. ^cIndian Institute of Technology, Roorkee, India.

Presenter: Pinaki Nath Chowdhury Venue: International Conference on Pattern Recognition, 2020

Contents:

- Challenges in Ground Terrain Recognition
- Motivation
- An Overview of our Solution
- Modeling Extent-of-Texture (EoT) Information
- EoT Guided Inter-domain Message Passing
- Results
- Conclusion

Challenges in Ground Terrain Recognition

Dominant Texture Information

Dominant Shape Information

Ground Terrain Recognition is a difficult task due to various reasons.

The context information varies significantly over the regions of a ground terrain image. Like some local regions posses significant texture information, while shape information is more dominant at some other parts.

Motivation

As most real-world ground terrain images show wide variations in texture and shape information at different local regions in an image, thus the classification of such realistic ground terrain images requires a more local level modeling of texture and shape information.

An Overview of our Solution

We propose a novel approach towards ground-terrain recognition via modeling the Extent-of-Texture information to establish a balance between the order-less texture and ordered-spatial information locally.

Modeling Extent-of-Texture (EoT) Information

Given an image $I \in \mathbb{R}^{H \times W \times 3}$, a backbone CNN feature extractor network $G(\cdot)$ takes I and outputs latent feature representation Z. Thus,

$$\mathsf{Z} = \mathsf{G}(\mathsf{I};\theta_{\mathsf{G}}) \tag{1}$$

Patch-extraction is performed on $Z \in \mathbb{R}^{8 \times 8 \times 512}$ using a sliding window mechanism where the window size and stride is chosen as (3×3) and 1 respectively. The patch-extraction operation generates $\psi = \{\psi_i\}_{i=1}^{i=k}$, where $\psi_i \in \mathbb{R}^{3 \times 3 \times 512}$ and k is the number of patches. Average pooling of ψ gives $\psi^* = \{\psi_i^*\}_{i=1}^{i=k}$.

Modeling Extent-of-Texture (EoT) Information (continued...)

Let $X = \{x_1, x_2, x_3, \dots, x_k, \}$, where x_i denotes the central region of the ψ_i patch e.g. $x_i = \psi_i[2; 2; :]$ and $x_i \in \mathbb{R}^{1 \times 1 \times 512}$.

The cosine similarity between ψ^* and X describes the order-less texture information \mathcal{T} , where $\mathcal{T} = \{\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \dots, \mathcal{T}_k\}$ and \mathcal{T}_i denotes the order-less texture information of the i^{th} patch. Therefore,

$$\psi_i^* = AvgPool(\psi_i, 3) \tag{2}$$

$$\mathcal{T}_{i} = \frac{\psi_{i}^{*} \cdot x_{i}}{||\psi_{i}^{*}||_{2} ||x_{i}||_{2}}$$
(3)
$$\mathcal{T}_{i} = \frac{\mathcal{T}_{i} - \mathcal{T}_{min}}{\mathcal{T}_{max} - \mathcal{T}_{min}}$$
(4)

Modeling Extent-of-Texture (EoT) Information (continued...)

A high value of \mathcal{T} indicates the presence of greater extent of the order-less texture information , whereas a small value of \mathcal{T} represents higher shape information.

The ordered shape information S, where $S = \{S_1, S_2, S_3, \dots, S_k\}$ and S_i denotes the ordered-spatial information of the *i*th patch. Then,

$$S_i = 1 - \mathcal{T}_i \tag{5}$$

EoT Guided Inter-domain Message Passing

The EoT Guided Inter-domain Message Passing module is used for sharing knowledge between texture and shape features to balance out the order-less texture information with ordered-spatial information.

Results

Table: Comparison of **Deep-TEN**, baseline **B1**, **B2**, **B3** and **B4** with the proposed methodology for single scale and multi scale training on GTOS-mobile [1] dataset using a pre-trained ResNet-18 module as the convolutional layer. Baseline B1 is similar to Deep Encoding Pooling Network (DEP) by Xue [1].

	Deep-TEN [2]	B1 [1]	B2	B3	B4	Proposed Method
Single Scale	74.22	76.07	77.81	78.55	78.93	80.39
Multi Scale	76.12	82.18	83.78	84.31	84.36	85.71

Table: Comparing Our method with several state-of-the-art methods on Describable Textures Dataset (DTD) and Materials in Context Database (MINC)

Method	DTD [3]	MINC-2500 [4]	
FV-CNN [5]	72.3	63.1	
Deep-TEN [2]	69.6	80.4	
DEP [1]	73.2	82.0	
Proposed Method	75.7	85.3	

Conclusion

- we have proposed a novel approach towards ground-terrain recognition via modeling the extent of texture information to establish a balance between the order-less texture component and ordered-spatial information locally.
- The driving idea of our architecture is the modeling of context information locally.
- ▶ The proposed framework is simple and easy to implement.
- We demonstrate the effectiveness of our system by conducting experiments on publicly available ground terrain datasets.

References

- J. Xue, H. Zhang, and K. Dana, "Deep texture manifold for ground terrain recognition," in *CVPR*, 2018.
- H. Zhang, J. Xue, and K. Dana, "Deep ten: Texture encoding network," *arXiv preprint arXiv:1612.02844*, 2016.
- M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, "Describing textures in the wild," in *CVPR*, 2014.
- S. Bell, P. Upchurch, N. Snavely, and K. Bala, "Material recognition in the wild with the materials in context database," in *CVPR*, 2015.
- M. Cimpoi, S. Maji, and A. Vedaldi, "Deep filter banks for texture recognition and segmentation," in *CVPR*, 2015.

Thank you Questions?

Source Code is available at: github.com/ShuvozitGhose/Ground-Terrain-EoT