Pseudo Rehearsal using non photo-
realistic Images

Suri Bhasker Sri Harsha,
Dr. Yeturu Kalidas.

Computer Science Department
Indian Institute of Technology Tirupati



Catastrophic forgetting problem

R. M. French, “Catastrophic forgetting in connectionist networks,”Trends in cognitive
sciences, vol. 3, no. 4, pp. 128-135, 1999.

Continual Learning

[1] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative
replay,” in Advances in Neural Information Processing Systems, pp. 2990-2999, 2017

[2] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong
learning with neural networks: A review,”"Neural Networks,20109.

[3] C. Atkinson, B. McCane, L. Szymanski, and A. Robins, “Pseudo-recursal:

Solving the catastrophic forgetting problem in deep neural networks,”arXiv preprint
arXiv:1802.03875, 2018.



Changing weights leads to distorted
decision boundary




“Distortion of the decision boundary
leads to forgetting.”



Pseudo Rehearsal ...

PSEUDO REHEARSAL

M,=Train (Bj*UB,*UB.,*U ... B,,*U B, M,,,)
here, B,is the training data for the task “T,".
and B* = G(B))

where B/ is the synthetic version of B, , generated using the
data generator G(). M, represents the neural network being

trained on task “T.”.

Ref: A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,”
Connection Science, vol. 7, no. 2, pp. 123-146, 1995.
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Genetic Algorithms



Difference In loss functions ...

GAN based approaches Ours
minmax(Generator, Genetic Algorithm + Softmax
Discriminator) confidence of target class

+ binary cross entrophy



Our approach ...



Our approach ...

“Instead of trying to generate photo realistic

Images, we try to generate images, which when
trained upon have the ability to preserve the
boundary that is responsible for retention of the
previous task.”




Our approach ...

“Instead of trying to generate photo realistic

Images, we try to generate images, which whe
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Algorithm 1 Synthetic data generation for a class ¢

P: {zg,r1,79...7,_1} // Random population

[Pl =m

while (dz € P): f.(z) < 7 do
P ={<x, f.z)> [Vz € P}
Let, L be a list in descending order of f.(x),Vz € P
P*=L[0...m=x*0.25] /top 25% of elements
C = [crossover(P*[j|, P*[j + 1])[Vj € [0...|P*| — 1]]
M = [mutation(z)|Vx € P*]
M¢ = [crossover(M[i], M[i+ 1])|Vi € [0,...,|M]|—1]]
P,.,=P*UCUMU DM,
P=Pw

end while

e-c

K o
Zj:l e’
where z 1s vector of scores for each of the classes 1... /K,
c is the given target class, f.(x) is softmax score for class
c on input = and K is the total number of classes.

Here f.(x) =
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“make blobs” dataset from Sklearn
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“make blobs” dataset from Sklearn

‘ . . = Real data

‘ = Synthetic data
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Experiment on learning and

retention behaviour ..



Experiment on learning and

retention behaviour ..

e Step 1:: M, =Train (B,)



Experiment on learning and

retention behaviour ..

e Step 1:: M, =Train (B,)

e Step 2:: M,=Train (B;*U B,)

here B,, B, are the training data for tasks “T,”and “T,” and
B,* is the synthetic version for B;.



Experiment on learning and

retention behaviour ..
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SVHN + Fashion datasets:

- Retention behaviour for SVHN dataset = Learning Fashion products during rehearsal of SVHN
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CIFAR10 + Fashion datasets:
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Can a neural network that is trained on images that look
like random noise, classify real images?
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Can a neural network that is trained on images that look
like random noise, classify real images?
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Can a neural network that is trained on images that look
like random noise, classify real images?
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Accuracy on real images
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Learning behaviour for MNIST Fashion
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* By “near-perfect”, we mean accuracy reached when trained on original data.



Agreement score



Agreement score

0
(I(PM,PN) = — x 100

T

where Fy; and Py are the predictions of model M and
model N on some test dataset. £ i1s the number of identical
predictions, |T7| is the size of the test data.



Agreement score

Dataset GAN Data Ours

MNIST Handwritten digits 95.346 % 83.675%
SVHN 86.8 % 83.6%

MNIST Fashion products 52.459% 80.977 %
CIFARI10 59 1% 61.8%

TABLE I: Results of Agreement score experiment



Computational requirements:

Comapnson of time consumed for vanous datasets
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Computational requirements:

Comapnson of time consumed for vanous datasets
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Key differences ...

GAN based Ours
approaches
Input Original data  Model, Target
labels

Output Synthetic data Synthetic data



Conclusions ..

* Neural networks can be rehearsed on non-photo realistic
Images.

e High retention and learning capacities can be achieved
with non-photo realistic images as well.

e Forgoing photo-realism can result in efficient utilization of
computational resources.



Thank you.
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