

Hyperspectral Imaging for Analysis and Classification of Plastic Waste

Jakub Kraśniewski¹, Łukasz Dąbała^{1,2}, Marcin Lewandowski^{1,2}
¹AVICON - Advanced Image Control, ²Warsaw University of Technology

Why is it needed?

Environmental issues

- Plastics and its laminates as one of the most common packaging materials
- Recycling rate in many countries is very low

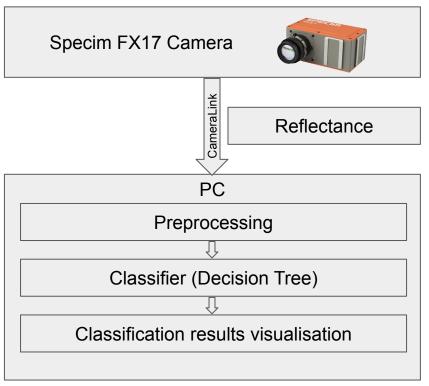
Sorting issues:

- Traditional, mechanical sorting methods fail:
 - Plastics can not be distinguished from each other
- Separation of polymers that affect the quality of recycled material
 - It can make the recycled material unusable

Materials

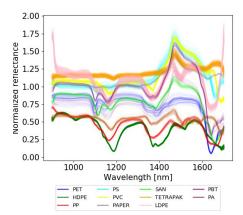
- Collection of samples based on daily-use products waste
 - Whole wrapping
 - Crushed material
- Materials base includes: LDPE, HDPE, PA, SAN, PET, PP, PS, PVC, PBT, paper, TetraPak

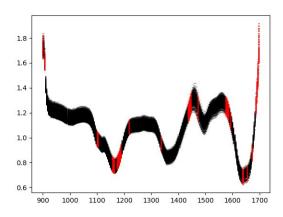
Examples of plastic waste materials - in RGB palette and in one of the wavelengths from NIR range


Hardware

- Camera:
 - Specim FX17 NIR & SWIR (900 1700 nm)
- Materials transported on a conveyor belt
- Lighting
 - White halogen lamp
 - Ekonair's Sun-Rai Halogen G

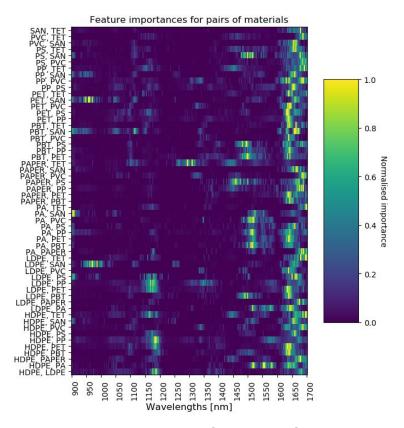
Measuring stand


Polymers classification system block diagram


Block diagram of polymers classification system

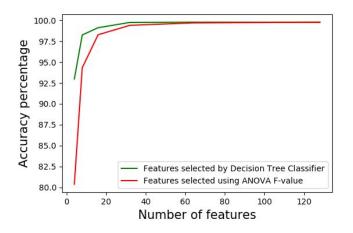
Preprocessing

- Reflectance measurement in NIR & SWIR range
- Determination of the most significant wavelengths for materials classification
- Classification based on characteristic wavelengths of the reflectance spectrum
- Preprocessing using Savitzky-Golay filtering and mean normalization


Reflectance of different materials

Most important wavelengths chosen by classifier

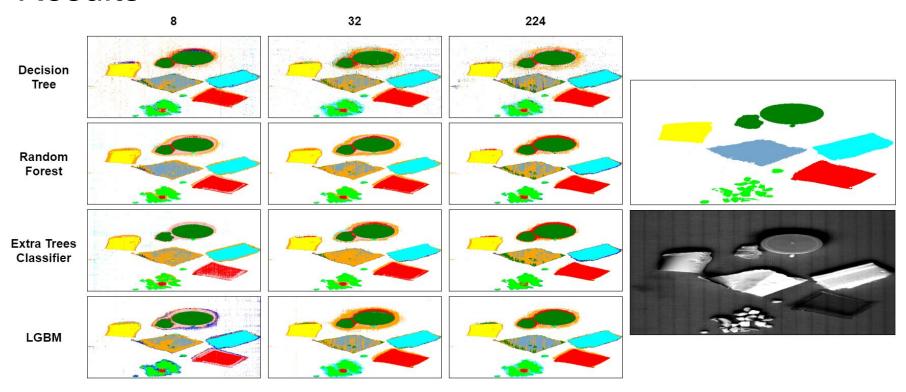
Classification


- Classifiers used:
 - Decision Tree
 - Extra Trees Classifier
 - Random Forest Classifier
 - LGBM Classifier
- Parameters for each classifier can be found in the paper

Features importances for pairs of materials

Reduction of spectral channels

- Camera performance with different Spectrum of Interest (SoI)
- Influence on the accuracy
- Optimal number of channels


Influence of number of wavelengths on accuracy

Results

	8	32	224
Decision Tree Classifier	83.3%	82.2%	82.2%
Random Forest	78.6%	87.8%	80.5%
Extra Trees Classifier	80.9%	86.6%	76.7%
LightGBM	79.9%	88.3%	86.1%
Decision Tree Classifier + Savitzky-Golay	83.3%	82.5%	82.2%
Random Forest + Savitzky-Golay	81.7%	87.8%	80.4%
Extra Trees Classifier + Savitzky-Golay	80.2%	87.3%	76.1%
LightGBM + Savitzky-Golay	80.0%	88.3%	86.0%
Decision Tree Classifier + mean norm.	83.9%	89.1%	86.5%
Random Forest + mean norm.	91.8%	91.2%	85,3%
Extra Trees Classifier + mean norm.	79.6%	90.1%	81.2%
LightGBM + mean norm.	85.8%	93.1%	91.3%

Results of the classifiers depending on the number of spectral channels

Results

Results of the classifiers depending on the number of spectral channels

Conclusions

- Reflectance measurement using NIR camera and Decision Tree classification can be used in a plastic waste sorting system
- Usage of Sols resulted in performance speedup and higher accuracy
- Mean normalization resulted in higher classification accuracy in comparison to Savitzky-Golay

Future work

- Black materials require different range of the spectrum
 - o Problem of the black materials will be solved in the future by using additional information:
 - RGB
 - SWIR

Thank you

Contact:

- Jakub Kraśniewski
- Marcin Lewandowski
- Łukasz Dąbała

- jakub.krasniewski@avicon.pl
- marcin.lewandowski@avicon.pl
- lukasz.dabala@pw.edu.pl