

Semi-Supervised GANs with Complementary Generator Pair for Retinopathy Screening

Presenter : Yingpeng Xie Supervisor : Baiying Lei

Background

Several typical types of retinopathy are major causes of blindness

Visible retinal microvascular changes may reflect the pathophysiological process of systemic diseases

- Challenge
 - Some scattered micro-aneurysm lesions may only occupy dozens of pixels.
 - Due to privacy and high labor-cost of reliable annotation, labeled fundus images are incredibly scarce compared to natural images, while a plethora of unlabeled fundus images is unused.

• Feature Extractor

	BO	B1	B2	B3	B4	B5	B6	B7	B8	L2-475	L2
Baseline preprocessing	76.8% (ckpt)	78.8% (ckpt)	79.8% (ckpt)	81.0% (ckpt)	82.6% (ckpt)	83.2% (ckpt)					
AutoAugment (AA)	77.3% (ckpt)	79.2% (ckpt)	80.3% (ckpt)	81.7% (ckpt)	83.0% (ckpt)	83.7% (ckpt)	84.2% (ckpt)	84.5% (ckpt)			
RandAugment (RA)						83.9% (ckpt)		85.0% (ckpt)	85.4% (ckpt)		
AdvProp + AA	77.6% (ckpt)	79.6% (ckpt)	80.5% (ckpt)	81.9% (ckpt)	83.3% (ckpt)	84.3% (ckpt)	84.8% (ckpt)	85.2% (ckpt)	85.5% (ckpt)		
NoisyStudent + RA	78.8% (ckpt)	81.5% (ckpt)	82.4% (ckpt)	84.1% (ckpt)	85.3% (ckpt)	86.1% (ckpt)	86.4% (ckpt)	86.9% (ckpt)	-	88.2% (ckpt)	88.4% (ckpt)

Generative Adversarial Networks

$$\begin{split} \min_{G} \max_{D} V(G,D) &= E_{x \in P_{\text{data}}(x)} \big[\log D(x) \big] + E_{z \in P(z)} \big[\log \big(1 - D(G(z)) \big) \big] \\ & - \Big[\max_{D} V(D) = \frac{1}{m} \sum_{i=1}^{m} \big[\log D(x^{(i)}) + \log \big(1 - D(G(z^{(i)})) \big) \big] \\ & - \Big[\min_{G} V(G) = \frac{1}{m} \sum_{i=1}^{m} \log \big(1 - D(G(z^{(i)})) \big) \big] \end{split}$$

• Semi-supervised GANs

$$L_{\scriptscriptstyle Total} ~=~ L_{\scriptscriptstyle Supervised} ~+~ L_{\scriptscriptstyle Minmax}$$

$$\begin{bmatrix} L_{Supervised} = -E_{x,y\sim P_{data}(x)}\log[D(y|x,y < K+1)] \\\\ \min_{G}\max_{D}V(G,D) = E_{x \in P_{data}(x)}[\log D(x)] + E_{z \in P(z)}[\log(1 - D(G(z)))] \end{bmatrix}$$

• Convergence conditions

(1) For $x, y \in P_{data}(x)$, while $y \neq k$, $w_y{}^T f(x) > w_k{}^T f(x)$

$$\textcircled{2} ext{ For } z ext{ } \epsilon ext{ } P_{\scriptscriptstyle noise}(z) ext{ , } w_{\scriptscriptstyle K+1}{}^{ \mathrm{\scriptscriptstyle T} } f(G(z)) ext{ > } \max_{\scriptscriptstyle k=1}^{\scriptscriptstyle K} w_{\scriptscriptstyle k}{}^{ \mathrm{\scriptscriptstyle T} } f(G(z))$$

$$\textcircled{3}$$
 For $x \ \epsilon \ P_{data}(x)$, $\max_{k=1}^{K} w_k{}^T f(x) \ > \ w_{K+1}{}^T f(x)$

Improved Method:

Ent:

6

$$\max_{D} ~ E_{x \epsilon P_{data}} \Biggl[\sum_{k=1}^{K} D_k(x) \log D_k(x) \Biggr]$$

Dynamic CE:

$$\max_{D} ~ E_{x \epsilon P_{data}} [\log D_i(x) | i = y_{\max}(x)]$$

• "Bad" Generator

$$\begin{split} L_{Generator}^{Bad} &= L_{FM} + L_{PT} \\ &= \left\| E_{z \in P_{noise}} f(G(z)) - E_{x \in P_{unlabeled}} f(x) \right\|^2 \\ &+ \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j \neq i} \left(\frac{f(G(z)_i)^T f(G(z)_j)}{\|f(G(z)_i)\| \|f(G(z)_j)\|} \right)^2 \end{split}$$

"Good" Generator

$$L^{Good}_{Generator} = -E_{z \epsilon P_{noise}} \left[\log D_i(G(z)) | i = y_{\max}(G(z)) \right]$$

Where:

$$y_{ ext{max}}(x) = arg \max_{y \in \{1,...,K\}} D_k(x)$$

The framework of our proposed GBGANs

Dataset

Туре	Source	Amount	Total	
Health		161		
High Myopia	iChallenge-PM	26	569	
Pathological Myopia		213		
Glaucoma	iChallenge-GON	87		
AMD	iChallenge-AMD	87		
Unlabeled	iChallenge	2631	2631	

All of the 3200 images are all centered at the posterior pole with both macula and optic disc in the field, each image was cropped to a square shape which included the most tightly contained circular area of the retinal fundus, and the image sizes are 1444 \times 1444, 1634 \times 1634 and 2124 \times 2056 respectively.

Dimensionality reduction by t-SNE.

(a) Pooled features extracted by the feature extractor

(b) Flattened features learned by the discriminator

Result

11

Trend of conditional entropy and dynamic entropy during the training process.

Comparison on the trend of smoothed accuracy on validation set among

GoodGANs (AMGANs), BadGANs, and our GBGANs during the training process

Result

Comparison with other SSL-GANs based methods for retinopathy screening.

Method	Accuracy	Macro-F1	Cohen kappa score
SSGANs	0.8722	0.8711	0.8260
FMGANs	0.8860	0.8158	0.8375
AMGANs(GoodGANs)	0.8421	0.8114	0.7689
BadGANs	0.9035	0.8645	0.8634
GBGANs(Our method)	0.9123	0.9029	0.8750

Confusion matrix of retinopathy screening results.

Thanks!

