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Motivation

Graph convolutional networks (GCNs) aim at generalizing deep
learning to arbitrary irregular domains.

Existing spatial GCNs follow a neighborhood aggregation
scheme.

However, these convolutional operations are ill-posed (mainly
translations and receptive fields) or weak to be discriminating.

For highly nonlinear (and low dimensional) input graph signals
(as 3D skeletons in action recognition), relying on input
features is not enough.
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Contribution : dual (kernel-based) GCNs

We consider, instead, an implicit mapping of the input graph
signal in a RKHS as in kernel machines.

The method achieves aggregation and convolution in that
space, without increasing the number of training parameters.

Our GCN model is able to achieve convolutions without
explicitly realigning nodes in the receptive fields of the learned
graph filters with those of the input graphs.

Experiments conducted on the task of skeleton-based action
recognition show the superiority of the proposed method
against different baselines as well as the related work.
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Standard vs kernel GCNs (I)

Consider G = (V, E) as a graph endowed with (i) a signal
{s(u) ∈ RD}u and (ii) an adjacency matrix A, and
gθ = (Vθ,Gθ) as a graph filter :

(G ? gθ)u = σ(Kθ(u)), with Kθ(u) =

〈∑
u′

s(u′).[Ar ]uu′ ,wθ

〉
.

In spite of being agnostic to arbitrary node permutations, the
above definition suffers from limited discrimination power.
Kernel GCN : considering κ as a symmetric p.s.d function (i.e.,
∃ψ : X → H, s.t., κ(s(u′), s(v)) = 〈ψ(s(u′)), ψ(s(v))〉).
For a particular setting of wθ as 1

|Vθ|
∑N

i=1 α
θ
i ψ(s(v

θ
i )) related

to the representer theorem (Wahba71, Scholkopf01)

Kθ(u) =
1

|Nr (u)|.|Vθ|
∑

u′∈Nr (u)

( N∑
i=1

αθ
i κ(u

′, vθ
i )

)
.
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Standard vs. kernel GCNs (II)

The strength of this kernel trick resides in its capacity to
handle nonlinear data as node representations are mapped into
a high dimensional (and more discriminating) space H = RH .

E.g., the polynomial κ(s(u), s(v)) = 〈s(u), s(v)〉p, its mapping
is ψ(s(u)) = s(u)⊗ · · · ⊗ s(u) (Maji12, Vedaldi12, Sahbi15).

As H grows exponentially w.r.t p and polynomially w.r.t D,
the kernel form is rather computationally more efficient.

We control the size of wθ =
1

|Vθ|
∑

i α
θ
i ψ(v

θ
i ) while allowing

entries in {vθi }i and {αθ
i }i to vary as a part of the end-to-end

GCN (and also kernel) learning.
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Database and settings

We evaluate our kernel-based GCN (KGCN) on the task of
action recognition, using the SBU kinect dataset.
This is an interaction dataset acquired using the Microsoft
kinect sensor ; it includes in total 282 video sequences
belonging to C = 8 categories with variable duration,
viewpoint changes and interacting individuals.
In all these experiments, we use the same evaluation protocol
as the one suggested in (SBU12) (i.e., train-test split) and we
report the average accuracy over all the classes of actions.
We trained KGCN for 3000 epochs, with a batch size of 50, a
momentum of 0.9 and a learning rate ν that decreases as
ν ← ν × 0.99 (resp. increases as ν ← ν/0.99).
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Input skeleton graphs

(raw coordinates)

Temporal Chunking s(v)

Motion trajectory (v)
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Performances

PPPPPPPPPkernels
GCNs

Standard GCN with different # of KPCA dimensions (H) Our KGCN

10 50 100 200 300 400 500 1000 2000 3000
Linear 92.3077 overdim overdim overdim overdim overdim overdim overdim overdim overdim 90.7692
Poly 89.2308 95.3846 92.3077 93.8462 93.8462 93.8462 93.8462 overdim overdim overdim 93.8462
tanh 89.2308 93.8462 90.7692 93.8462 90.7692 92.3077 93.8462 92.3077 93.8462 92.3077 96.9231

sigmoid 93.8462 90.7692 93.8462 92.3077 92.3077 92.3077 92.3077 96.9231 93.8462 92.3077 95.3846
Gaussian 92.3077 92.3077 92.3077 92.3077 96.9231 93.8462 93.8462 93.8462 93.8462 93.8462 98.4615
Laplacian 92.3077 93.8462 95.3846 92.3077 90.7692 90.7692 95.3846 93.8462 90.7692 90.7692 98.4615
Power 90.7692 92.3077 95.3846 92.3077 92.3077 95.3846 95.3846 93.8462 93.8462 92.3077 96.9231
IMQ 87.6923 92.3077 95.3846 95.3846 93.8462 93.8462 90.7692 95.3846 93.8462 93.8462 95.3846
Log 93.8462 92.3077 92.3077 95.3846 93.8462 93.8462 95.3846 90.7692 95.3846 90.7692 96.9231

Cauchy 93.8462 95.3846 95.3846 92.3077 96.9231 93.8462 92.3077 95.3846 92.3077 93.8462 98.4615
HI 93.8462 92.3077 89.2308 90.7692 92.3077 92.3077 87.6923 87.6923 90.7692 87.6923 96.9231

time/epoch (s) 0.032 0.057 0.072 0.113 0.150 0.190 0.229 0.440 0.840 1.252 0.210

hhhhhhhhhhhhhhhhh# of Filters (K )
# of SVs (N)

1 4 8

1 84.6154 84.7552 85.1748
5 93.1469 95.3846 92.8671
10 92.1678 95.1049 95.1049
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Ablation Study

XXXXXXXXXXXkernels
KGCNs

Fixed-SV / Learned-α Learned-SV / Fixed-α Learned-SV / Learned-α

Linear 89.2308 90.7692 90.7692
Polynomial 84.6154 90.7692 93.8462

tanh 87.6923 90.7692 96.9231
Sigmoid 95.3846 95.3846 95.3846
Gaussian 84.6154 93.8462 98.4615
Laplacian 84.6154 93.8462 98.4615
Power 92.3077 95.3846 96.9231

I. Multi-quadric 81.5385 93.8462 95.3846
Log 84.6154 90.7692 96.9231

Cauchy 86.1538 92.3077 98.4615
HI 86.1538 95.3846 96.9231
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Comparison

Perfs
90.00
96.00
94.00
96.00
49.7
80.3
86.9
83.9
80.35
90.41
93.3
90.5
91.51
94.9
97.2
95.7
93.7
98.46

Methods
GCNConv [57]
ArmaConv [61]
SGCConv [59]
ChebyNet [58]
Raw coordinates [53]
Joint features [53]
Interact Pose [62]
CHARM [63]
HBRNN-L [64]
Co-occurrence LSTM [66]
ST-LSTM [67]
Topological pose ordering[70]
STA-LSTM [56]
GCA-LSTM [55]
VA-LSTM [68]
DeepGRU [54]
Riemannian manifold trajectory[69]
Our best KGCN model
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Conclusion

We introduce in this paper a kernel-based GCN that defines
convolutional graph filters in a high dimensional RKHS.

The proposed kernel (dual) GCN formulation provides an
effective way to enhance the discrimination power of the
learned graph representations and it overtakes standard
(primal) GCN approaches as well as the related work.

As a future work, we are currently investigating the
combination of explicit node expansion with implicit kernel
mapping, in order to further enhance the generalization
performances.
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