

Detecting rare cell populations in flow cytometry data using UMAP

Lisa Weijler¹, Markus Diem¹, Michael Reiter¹, Margarita Maurer-Granofszky², Angela Schumich², and Michael Dworzak²

TUWIEN

 25^{th} International Conference on Pattern Recognition Milan, January $10^{th}-15^{th},\,2021$

¹ Computer Vision Lab, TU Wien, Austria

² Children Cancer Research Institute, Vienna, Austria

Acute Lymphoblastic Leukemia (ALL) & Minimal Residual Disease (MRD)

- development of large numbers of immature lymphocytes
- evaluation of response to treatment with MRD assessment
- assessment of MRD via bone-marrow puncture and flow cytometer

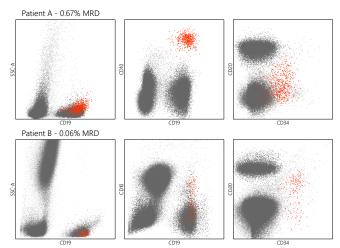
Flow cytometry (FCM) to transform cell characteristics into feature vectors

bone marrow sample

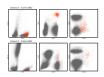
flow cytometry

find leukemic cells (MRD)

What's the difficulty of automation of MRD assessment?



What's the difficulty of automation of MRD assessment?



 variation of cell populations

• cell population to be detected as low as 0.01% • limited availability of training data

holistic approach: flexible decision regions

vs.

event-based approach: fixed decision regions

• Random forest^[1] (RF) for classification

- Random forest^[1] (RF) for classification
- \bullet Transforming FCM features into 2D embedding before classification with RF

$\begin{bmatrix} \vdots \\ x_n \end{bmatrix}$ reduction $\begin{bmatrix} ilde{x}_2 \end{bmatrix}$ classifier healthy cell	:	\rightarrow	Dimensionality reduction	\rightarrow	$\begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix}$	\rightarrow	Random forest classifier	\rightarrow	leukemic or healthy cell
--	---	---------------	--------------------------	---------------	--	---------------	-----------------------------	---------------	-----------------------------

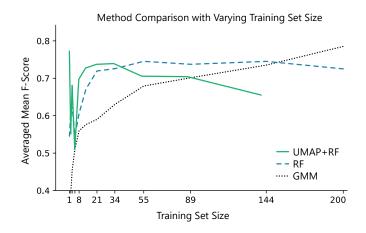
Uniform Manifold Approximation & Projection^[2] (UMAP) t-distributed Stochastic Neighbor Embedding^[3] (t-SNE) Principal Component Analysis^[4] (PCA)

Locally Linear Embeddings^[5] (LLE)

Basic idea:

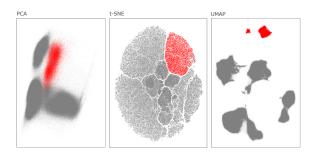
- Reduce redundance and noise
- Mapping to latent space as a calibration step

Training set: 200 samples from Vienna - <u>Test set:</u> 72 samples from Berlin



GMM refers to approach [6]

Alternative feature transform & embedding dimensionality



Method	N	p	r	avg F_1	$\operatorname{med} F_1$
PCA+RF	8	0.362	0.656	0.377	0.324
t-SNE+RF	8	0.696	0.747	0.615	0.693
LLE+RF	8	0.725	0.729	0.621	0.730
UMAP+RF (6D)	8	0.823	0.687	0.688	0.785
UMAP+RF	8	0.790	0.758	0.697	0.833

Key findings

- sufficient training samples \rightarrow holistic approach^[6] superior
- event-based method RF has a glass ceiling $(F_1$ -score = 0.73)
- dimensionality reduction with UMAP prior to classification with RF allows for a training set size reduction of more than 90%
 (N = 144 to N = 8) without performance loss in the problem setting discussed
- choice of dimensionality reduction method and embedding dimensionality matters → UMAP proves superior in terms of run time performance and F₁-score

the performance of the standard classifier can be improved significantly by combining it with a preceding unsupervised learning step involving UMAP

- [1] L. Breiman Random Forests. Machine learning, 45(1): 5-32, 2001.
- [2] L. McInnes et al. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. https://arxiv.org/abs/1802.03426
- [3] L. VAN DER MAATEN Accelerating t-sne using tree-based algorithms. Journal of Machine Learning Research, 15(1): 3221–3245, 2014.
- [4] K. Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11): 559–72, 1901.
- [5] S. T. ROWEIS ET AL. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(5500): 2323–2326, 2000.
- [6] M. REITER ET AL. Automated Flow Cytometric MRD Assessment in Childhood Acute B- Lymphoblastic Leukemia Using Supervised Machine Learning. Cytometry, 95: 966-975, 2019.

Table 1: Comparison of random forest (RF), preprocessing with UMAP and Gaussian Mixture Manifolds trained with all available training data VIE (N) and tested against BLN (M). Precision (p), recall (r), average F-Score (avg F_1), and median F-Score (med F_1) are calculated per single cell.

Method	N	\mathbf{M}	p	r	avg F_1	$\operatorname{med} F_1$
GMM [6]						
RF	200	72	0.872	0.750	0.725	0.886
$_{\mathrm{UMAP+RF}}$	200	72	0.596	0.974	0.657	0.801

Table 2: Comparison of RF, UMAP+RF and GMMs if 8 training samples are randomly chosen from VIE (N) and tested against BLN (M).

Method						
GMM [6]	8	72	0.756	0.613	0.559	0.637
					0.606	
UMAP+RF	8	72	0.790	0.758	0.697	0.833