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Related Work and Contributions

• Some research has been directed towards brain MR generation [1-3], however, 
they do not cater to the high diversity and low quantity of data

• Contributions:

• Generate diverse synthetic images from very limited datasets

• Feature disentanglement and sequential generation for high resolution
images and added control over generated tumor properties,

• Quantitative analysis of efficacy of proposed method in learning and 
recreating visually unapparent data distribution compared to naive GANs
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Proposed Approach

✓ Visual indicators of mutation:
- Exist
- Reproducible
✓ Significant macro-features:
- Shape, texture and location of 

tumor
✓ Data highly diverse and 

limited

What we know*

Break down a tumor and 
recreate from the data 

distributions

What we do

Shape

Texture

Location

A model that can tackle the issues of:

✓ Limited data

✓ High data diversity 

✓ Learning visually unapparent features

The result?

*Jonnalagedda, Padmaja, Brent Weinberg, Jason Allen, and Bir Bhanu. "Feature Disentanglement to Aid Imaging Biomarker Characterization for Genetic Mutations." In Medical Imaging with Deep 
Learning, pp. 349-364. PMLR, 2020.



SAGE: Sequential Attribute Generator



Shape Generation

where Ix is the indicator function which is 0 when X is data and 1 when X is noise. The noise is sampled from random normal distribution. G and D are Generator and
Discriminator, respectively. y is the generated image and xreal is the real image. Zreal=noiseare the latent space representations of real and noisy inputs.



Texture Generation
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where: LTAN: overall loss function, wi: weight of ith layer, T: sampled Tumor Crop (TC), B: input Syn-Binary TC, I: output Syn-TC,
Fi: output of i

th layer and gi: Gram matrix of ith layer output



Data Used 

• Data provided by Emory University 

• 38 patients: 18 mutated and 20 control 

• Two classes: Mutated and control classes (with and without 19/20 co-gain)



Results 



Results 



Blind Test by Radiologists

Blind test for radiologists to distinguish between real and synthetic tumor
crops. The metrics: ACC - Accuracy, FPR - False Positive Rate, TNR - True
Negative Rate, PR - Precision. Row (non-shaded) are values for each
radiologist and row (shaded) is the mean value across all radiologists.



Diversity



Quality test
Inception score (IS) and Structural Similarity (SSIM)



Conclusions

• Sequential generation of disentangled attributes can:

1. Cater to limited datasets (as low as 60 training samples per class)

2. Generate high resolution images

3. Generate high diversity dataset

compared to PG-GAN and standard GANs

• SAGE generates realistic images – thus, it captures data distribution 
accurately 

• SAGE tackles problems of real-world datasets, rendering it very useful
for data generation tasks
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