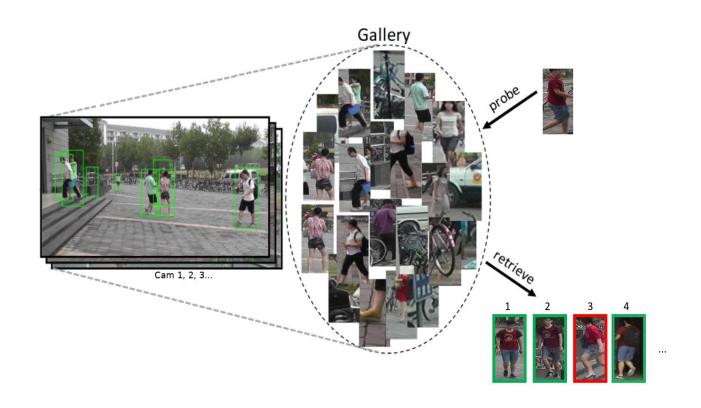


UNSUPERVISED DOMAIN ADAPTATION FOR PERSON RE-IDENTIFICATION THROUGH SOURCE-GUIDED PSEUDO-LABELING

Fabian Dubourvieux, Romaric Audigier, Angelique Loesch, Samia Ainouz, Stephane Canu



CONTEXT - PERSON RE-IDENTIFICATION : A RETRIEVAL TASK

 Goal: identifying the same person across different nonoverlapping cameras in a gallery of images [1]

[1] Zheng, Liang, Yi Yang, and Alexander G. Hauptmann. "Person re-identification: Past, present and future." arXiv preprint arXiv:1610.02984 (2016).

CARNOT

CONTEXT - PERFORMANCE DROP FOR CROSS DOMAIN TESTING

Market-1501 dataset [2]

DukeMTMC-ReID dataset [3]

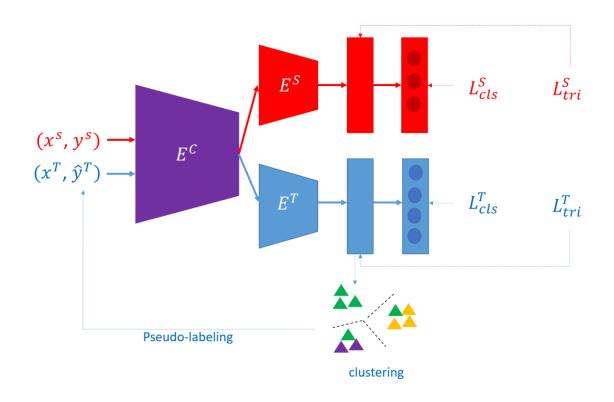
Train on \Test on (mAP %)	Market-1501 [2]	DukeMTMC-ReID [3]
Market-1501	78.2	11.9
DukeMTMC-ReID	19.1	65.4

Example of performance drops in the cross-domain setting compared to intra-domain performance.

[2] Zheng, Liang, et al. "Scalable person re-identification: A benchmark." *Proceedings of the IEEE international conference on computer vision*. 2015.

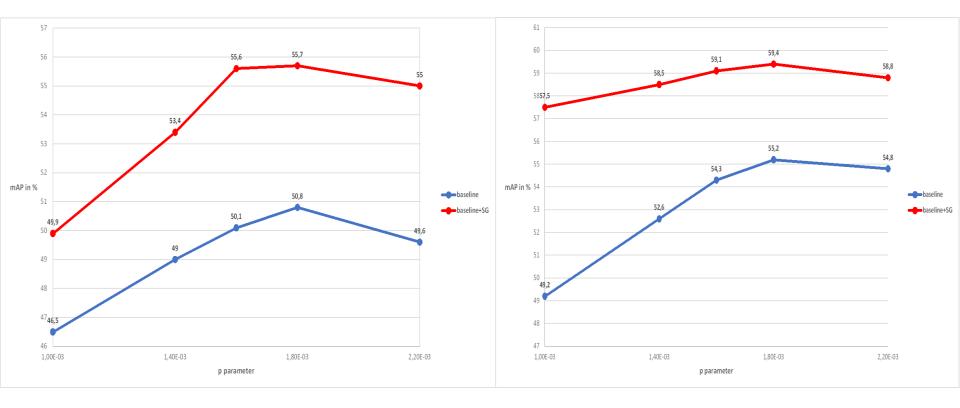
[3] Zheng, Zhedong, Liang Zheng, and Yi Yang. "Unlabeled samples generated by gan improve the person re-identification baseline in vitro." *Proceedings of the IEEE International Conference on Computer Vision*. 2017.

CONTEXT - UNSUPERVISED DOMAIN ADAPTATION (UDA)


TRAIN PHASE TEST PHASE

UDA goal: reaching the best perf on the target domain with labeled source domain samples and unlabeled target samples

CONTRIBUTION - UNSUPERVISED DOMAIN ADAPTATION FOR PERSON RE-IDENTIFICATION THROUGH SOURCE-**GUIDED PSEUDO-LABELING**



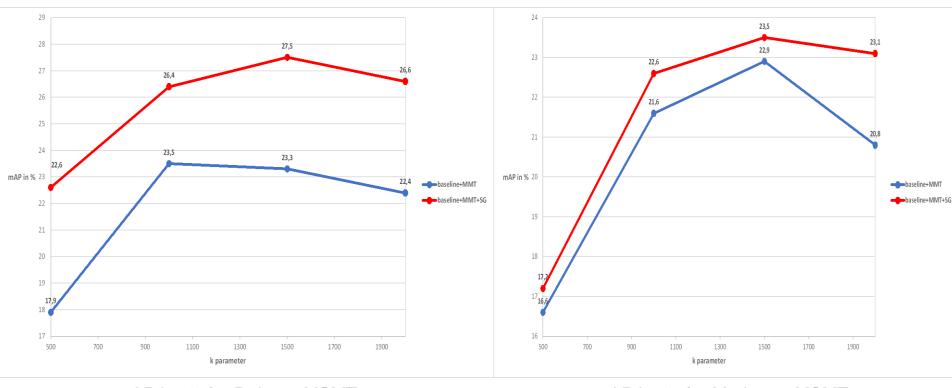
- Keep learning re-ID features with source data => Source-guidance as a regularizer to reduce pseudo-label error overfitting
- 2 specialized branches => High-level domain-specific re-ID features that avoid source bias in target re-ID features
- Domain-specific batch normalization => Cope with domain discrepancy that degrades learning with batch norm

CONTRIBUTION - SOURCE-GUIDED VS TARGET ONLY PSEUDO-LABELING BASELINE

mAP in % for Maket to Duke

mAP in % for Duke to Market

Improvement of performances by our Source-Guided (+SG) framework
 [4] for several clustering (DBSCAN) parameters


[4] Song, Liangchen, et al. "Unsupervised domain adaptive re-identification: Theory and practice." *Pattern Recognition* 102 (2020): 107173.

CONTRIBUTION - SOURCE GUIDED VS TARGET ONLY MMT[5]

mAP in % for Duke to MSMT

mAP in % for Market to MSMT

 Improvement of performances by our source-guided (+SG) Mutual Mean Teaching (+MMT) framework for several clustering (k-means) parameters

[5] Ge, Yixiao, Dapeng Chen, and Hongsheng Li. "Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification." arXiv preprint arXiv:2001.01526 (2020).

CARNOT CEA LIST UNIVERSITE

CONTRIBUTION - SOTA COMPARISON

COMPARISON WITH STATE-OF-THE-ART METHODS.

Methods	Market-to-Duke		Duke-to-Market	
	mAP	top-1	mAP	top-1
SPGAN [2]	22.3	41.1	22.8	51.5
TJ-AIDL [16]	23.0	44.3	26.5	58.2
MMFA [9]	24.7	45.3	38.3	66.2
HHL [23]	27.2	46.9	31.4	62.2
CFSM [1]	27.3	49.8	28.3	61.2
UCDA-CCE [12]	31.0	47.7	30.9	60.4
ARN [7]	33.4	60.2	39.4	70.3
ECN [24]	40.4	63.3	43.0	75.1
PoseDA-Net [8]	45.1	63.2	47.6	75.2
UDAP [14]	49.0	68.4	53.7	75.8
SSG [3]	53.4	73.0	58.3	80.0
ISSDA-re-ID [15]	54.1	72.8	63.1	81.3
PCB-PAST [21]	54.3	72.4	54.6	78.4
ACT [18]	54.5	72.4	60.6	80.5
MMT [4]	65.1	78.0	71.2	87.7
(target-only) baseline	50.1	70.1	54.3	73.5
baseline+SG	55.6	73.2	59.1	80.8
baseline+MMT+SG	64.8	78.5	70.5	88.1

Methods	Market-to-MSMT		Duke-to-MSMT	
	mAP	top-1	mAP	top-1
PTGAN [17]	2.9	10.2	3.3	11.8
ECN [12]	8.5	25.3	10.2	30.2
UDAP [14]	12.0	30.5	16.0	39.2
SSG [3]	13.2	49.6	13.3	32.2
MMT [4]	22.9	49.2	23.5	50.1
(target-only) baseline	11.6	29.8	14.8	36.1
baseline+SG	14.9	35.4	19.3	45.6
baseline+MMT+SG	23.5	50.2	27.5	56.1

- Competitive performances on Market to Duke and Duke to Market
- + 0,6% mAP on Market to MSMT
 and + 4% on Duke to MSMT
- SG interesting for hard adaptation tasks & pseudo-label methods without noise robusteness strategy

CONTRIBUTION - CONCLUSION

- Wisely leveraging the source domain in pseudo-label methods improves performances on the target domain
- Contact: <u>fabian.dubourvieux@cea.fr</u>
- Thanks for your attention!

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019