Superpixel-based Refinement for Object Proposal Generation

Christian Wilms and Simone Frintrop

University of Hamburg Department of Informatics

Universität Hamburg

14 January 2021 ICPR 2020

Motivation	Method	Conclusion

Object Proposal Generation (OPG)

Problems of Segmentations in OPG

Proposed Idea

Result w/o our refinement

Motivation	Method	Conclusion

Object Proposal Generation (OPG)

- Localize and segment all objects in an image
- Class-agnostic proposals in contrast to instance segmentation

Problems of Segmentations in OPG

Proposed Idea

Result w/o our refinement

Motivation	Method	Conclusion

Object Proposal Generation (OPG)

Problems of Segmentations in OPG

- State-of-the-art systems segment proposals on coarse resolution (e.g. 10×10 pixels)
- Hundreds of proposals per image

Proposed Idea

Result w/o our refinement

Motivation	Method	Conclusion

Object Proposal Generation (OPG)

Problems of Segmentations in OPG

- State-of-the-art systems segment proposals on coarse resolution (e.g. 10×10 pixels)
- Hundreds of proposals per image

Proposed Idea

- Combine coarse DL-based proposals and fine-grained superpixels
- Classify superpixels as foreground or background

Result w/o our refinement

Motivation ○	Method ●○	Conclusion
System Overview		

Motivation O	Method ●○	Evaluation	Conclusion
System Overview			

Generate coarse object proposals with state-of-the-art AttentionMask [Wilms and Frintrop, ACCV'18].

Christian Wilms and Simone Frintrop

University of Hamburg, Department of Informatics

Motivation O	Method ●○	Evaluation	Conclusion
System Overview			

Generate detailed superpixel segmentations [Felzenszwalb and Huttenlocher, IJCV'04] for object proposals of different scales.

Motivation O	Method ●○	Evaluation	Conclusion
System Overview			

Extract features from the backbone network for object proposals of different scales.

Motivation o	Method ●○	Conclusion
System Overview		

Combine coarse proposals with extracted features using superpixel pooling and classify the superpixels.

Motivation ⊙	Method ○●	Evaluation 00	Conclusion
Simplified Example	9		
Superpixel Segmentation	AttentionMask	Superpixel Refinement (per	Proposal)
Extracted Features			

Christian Wilms and Simone Frintrop

Motivation O	Method ○●		Conclusion
Simplified Example			
Superpixel V Segmentation	AttentionMask Proposal	Superpixel Refinement (per Propos	sal)

-

Upsample

• Upsample coarse object proposal mask

from AttentionMask

Motivation O	Method ○●	Conclusion
Simplified Example		
Supernixel	AttentionMask	

Segmentation

Superpixel Refinement (per Proposal)

• Upsample coarse object proposal mask from AttentionMask

Motivation O	Method ○●	Conclusion

Superpixel Refinement (per Proposal)

- Upsample coarse object proposal mask from AttentionMask
- Superpixel avg. pooling on upsampled results → mask prior: superpixel rather foreground or background

Features

Motivation O	Method ○●	Conclusion
Circulifie d. Evenue de		

- Upsample coarse object proposal mask from AttentionMask
- Superpixel avg. pooling on upsampled results → mask prior: superpixel rather foreground or background

Motivation O	Method ○●	Conclusion

- Upsample coarse object proposal mask from AttentionMask
- Superpixel avg. pooling on upsampled results → mask prior: superpixel rather foreground or background
- Superpixel avg. pooling on extracted features → feature vector per superpixel

Motivation O	Method ⊙●	Conclusion

- Upsample coarse object proposal mask from AttentionMask
- Superpixel avg. pooling on upsampled results → mask prior: superpixel rather foreground or background
- Superpixel avg. pooling on extracted features → feature vector per superpixel

Motivation O	Method ⊙●	Conclusion

- Upsample coarse object proposal mask from AttentionMask
- Superpixel avg. pooling on upsampled results → mask prior: superpixel rather foreground or background
- Superpixel avg. pooling on extracted features → feature vector per superpixel
- Classify each superpixel based on mask prior and feature vector as foreground or background

Motivation O	Method ⊙●	Conclusion

- Upsample coarse object proposal mask from AttentionMask
- Superpixel avg. pooling on upsampled results → mask prior: superpixel rather foreground or background
- Superpixel avg. pooling on extracted features → feature vector per superpixel
- Classify each superpixel based on mask prior and feature vector as foreground or background

Motivation	Method	Evaluation	Conclusion
		● O	

Quantitative Results on LVIS Dataset

Method	AR@10	AR@100
DeepMask [Pinheiro et al., NIPS'15]	0.069	0.147
SharpMask [Pinheiro et al., ECCV'16]	0.073	0.154
FastMask [Hu et al., CVPR'17]	0.069	0.161
AttentionMask [Wilms and Frintrop, ACCV'18]	0.073	0.189
Ours	0.092	0.206

- LVIS has COCO images with more precise annotations
- AR@N: Average Recall for N proposals

Motivation Method	Evaluation	Conclusion
	● ○	

Quantitative Results on LVIS Dataset

Method	AR@10	AR@100
DeepMask [Pinheiro et al., NIPS'15]	0.069	0.147
SharpMask [Pinheiro et al., ECCV'16]	0.073	0.154
FastMask [Hu et al., CVPR'17]	0.069	0.161
AttentionMask [Wilms and Frintrop, ACCV'18]	0.073	0.189
Ours	0.092	0.206

Method	BR↑	UE↓
DeepMask	0.488	0.087
SharpMask	0.561	0.080
FastMask	0.510	0.084
AttentionMask	0.568	0.070
Ours	0.681	0.068

- LVIS has COCO images with more precise annotations
- AR@N: Average Recall for N proposals
- BR: Boundary Recall
- UE: Undersegmentation Error

Motivation	Method	Evaluation	Conclusion
		00	

Qualitative Results on LVIS Dataset

 ${\sf Attention} {\sf Mask}$

Ground Truth

Christian Wilms and Simone Frintrop

University of Hamburg, Department of Informatics

Ours

Motivation	Method	Evaluation	Conclusion
		0	

Qualitative Results on LVIS Dataset

AttentionMask

Ours

Ground Truth

Motivation	Method	Conclusion
O	00	●○
Summarv		

- Object proposals mostly have only coarse segmentations
- Superpixel-based refinement
- Combination of coarse masks, DL features and superpixels
- Improvement in general object proposal results
- Better adherence to object boundaries

Conclusion

Superpixels can be helpful in combination with DL!

Result w/o our refinement

Motivation	Method	Conclusion
O	୦୦	○●
Thank you for your att	ontion	

Thank you for your attention!

Visit our poster in session **PS T5.6** on **Thursday**, 14 January

LA 07:00 am New York 10:00 am CET 04:00 pm Beijing 11:00 pm Sydney 02:00 am

Web page with **Code and Paper** www.inf.uni-hamburg.de/ spxrefinement