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System Overview

Generate coarse object proposals with state-of-the-art AttentionMask [Wilms and

Frintrop, ACCV’18].
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System Overview

Generate detailed superpixel segmentations [Felzenszwalb and Huttenlocher, IJCV’04] for
object proposals of different scales.
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System Overview

Extract features from the backbone network for object proposals of different
scales.
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System Overview

Combine coarse proposals with extracted features using superpixel pooling and
classify the superpixels.
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Quantitative Results on LVIS Dataset

Method AR@10 AR@100

DeepMask [Pinheiro et al., NIPS’15] 0.069 0.147
SharpMask [Pinheiro et al., ECCV’16] 0.073 0.154
FastMask [Hu et al., CVPR’17] 0.069 0.161
AttentionMask [Wilms and Frintrop, ACCV’18] 0.073 0.189

Ours 0.092 0.206

Method BR↑ UE↓
DeepMask 0.488 0.087
SharpMask 0.561 0.080
FastMask 0.510 0.084
AttentionMask 0.568 0.070

Ours 0.681 0.068

LVIS has COCO images with more precise
annotations

AR@N: Average Recall for N proposals

BR: Boundary Recall

UE: Undersegmentation Error
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Qualitative Results on LVIS Dataset

AttentionMask Ours Ground Truth
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Summary

Object proposals mostly have only coarse
segmentations

Superpixel-based refinement

Combination of coarse masks, DL features and
superpixels

Improvement in general object proposal results

Better adherence to object boundaries

Conclusion

Superpixels can be helpful in combination with DL!

Result w/o our refinement

Result with our refinement
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Thank you for your attention!

Visit our poster in session PS
T5.6 on Thursday, 14 January

LA 07:00 am

New York 10:00 am

CET 04:00 pm

Beijing 11:00 pm

Sydney 02:00 am
Web page with Code and Paper

www.inf.uni-hamburg.de/

spxrefinement
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