Motivation ○	Dataset ⊙	Method 00		Conclusion
_				
	Which Airline is This?	Airline Logo D	Detection in Real-Wo	orld
		/eather Conditio		

<u>Christian Wilms</u>*, Rafael Heid^{*†}, Mohammad Araf Sadeghi^{*}, Andreas Ribbrock[†], and Simone Frintrop^{*}

 * University of Hamburg, Department of Informatics † zeroG GmbH, Germany

13 January 2021 ICPR 2020

Motivation •	Dataset ⊙	Method ○○	Conclusion
Characteristics of	Logo Detection		

Logo Detection

- Used for checking visibility of advertisements, ...
- Mostly based on object detectors like Faster R-CNN
- Datasets feature clean images

Results of Faster R-CNN

Motivation •	Dataset ⊙	Method 00	Conclusion
Characteristics of	Logo Detection		

Logo Detection

- Used for checking visibility of advertisements, ...
- Mostly based on object detectors like Faster R-CNN
- Datasets feature clean images
- Are object detectors enough?
- What about real-world weather?

Results of Faster R-CNN

Motivation •	Dataset ○	Method 00	Conclusion
Characteristics of	f Logo Detection		

Logo Detection

- Used for checking visibility of advertisements, ...
- Mostly based on object detectors like Faster R-CNN
- Datasets feature clean images
- Are object detectors enough?
- What about real-world weather?

Results of Faster R-CNN

- ... dataset with images captured in adverse weather conditions
- ullet ... system for airline logo detection + learning free data augmentation strategy

Motivation O	Dataset •	Method 00	Conclusion
Proposed D	ataset		

- Detection of airline logos on images from planespotters
- 7038 annotated airline logos 41 classes

	Train	Val	Test1	
Simple images	1	1	1	

Simple test split

Motivation	Dataset	Method	Conclusion
	•		
Proposed D	ataset		

- Detection of airline logos on images from planespotters
- 7038 annotated airline logos 41 classes

	Train	Val	Test1	Test2
Simple images	1	1	1	/
Difficult images				~

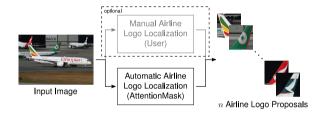
Difficult images

- Only 252 images with 459 annotations
- Effected by adverse weather conditions

Simple test split

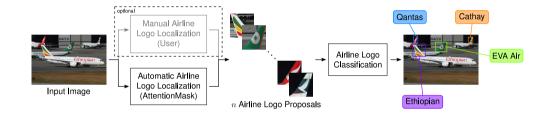
Difficult test split

Christian Wilms et al.


University of Hamburg, Department of Informatics

Motivation O	Dataset ⊙	Method ●○	Conclusion
Airline Logo	Detection Syste	em	

Input Image


Motivation ○	Dataset ○	Method ●○	Conclusion
Airline Logo D	etection Svsten	n	

Localization

- AttentionMask [Wilms and Frintrop, ACCV'18] for localizing logo proposals
- Can be provided by the user

Motivation O	Dataset O	Method ●○	Conclusion
Airline Logo	Detection Syste	m	

Localization

- AttentionMask [Wilms and Frintrop, ACCV'18] for localizing logo proposals
- Can be provided by the user

Classification

- Classifier based on VGG
- Optimized architecture
- Lightweight design with 7 layers

Motivation	Dataset	Method	Conclusion
		00	

Data Augmentation for Adverse Weather Conditions

Fog

Original simple images

Our augmentation on simple images

Increase brightness

Original difficult images

Christian Wilms et al.

Motivation	Dataset	Method	Conclusion
		00	

Data Augmentation for Adverse Weather Conditions

Fog

Increase brightness

Rain/dark clouds

Contrast reduction

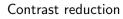
Motivation	Dataset	Method	Conclusion
		00	

Data Augmentation for Adverse Weather Conditions

Fog

Increase brightness

Rain/dark clouds



Raindrops

Local blurring

Christian Wilms et al.

University of Hamburg, Department of Informatics

Motivation	Dataset	Method	Evaluation	Conclusion
○	○	00	•	
Results				

:		
mAP	mAP ₇₅	
0.698	0.869	
0.659	0.826	
0.708	0.880	
	mAP 0.698 0.659	mAPmAP ₇₅ 0.6980.8690.6590.826

Faster R-CNN w/o DA

Ours w/o DA

Faster R-CNN [Ren et al., NIPS'15] YOLOv3 [Redmond and Farhadi, arXiv'18]

Christian Wilms et al.

University of Hamburg, Department of Informatics

Motivation	Dataset	Method	Evaluation	Conclusion
O	○	○○	•	
Results				

:		
mAP	mAP ₇₅	
0.698	0.869	
0.659	0.826	
0.708	0.880	
	mAP 0.698 0.659	mAPmAP ₇₅ 0.6980.8690.6590.826

Faster R-CNN w/o DA

Ours w/o DA

Difficult Test Split					
mAP	mAP ₇₅				
0.101	0.129				
0.118	0.102				
0.173	0.221				
	mAP 0.101 0.118				

Faster R-CNN [Ren et al., NIPS'15] YOLOv3 [Redmond and Farhadi, arXiv'18]

Motivation	Dataset	Method	Evaluation	Conclusion
○	○	00	•	
Results				

Simple Test Split			
Method	mAP	mAP ₇₅	
YOLOv3	0.698	0.869	
Faster R-CNN	0.659	0.826	
Ours	0.708	0.880	

Faster R-CNN w/o DA Ours w/o DA

Difficult Test Split

Method	mAP	mAP ₇₅
YOLOv3	0.101	0.129
Faster R-CNN	0.118	0.102
Ours	0.173	0.221

Difficult Test Split with our Data Augmentation

Method	mAP	mAP ₇₅
YOLOv3	0.123	0.147
Faster R-CNN	0.128	0.117
Ours	0.203	0.248

Faster R-CNN [Ren et al., NIPS'15] YOLOv3 [Redmond and Farhadi, arXiv'18]

Christian Wilms et al.

Motivation	Dataset	Method	Conclusion
○	⊙	00	●○
Summarv			

- Dataset with adverse weather effects
- Tailored architecture for airline logo detection system
- Data augmentation strategy to counter adverse weather effects

Conclusion

- Tailored architecture works better than object detectors
- Adverse weather conditions have strong effect on the results
- Data augmentation improves the results

Ours with DA

Motivation	Dataset	Method	Conclusion
O	O	00	○●
Thank you	for your attention	۱I	

Acknowledgement

We thank the administrators of planespotters.net for allowing us to use their database for this research.

Visit our poster in session **PS T3.5** on **Wednesday**, 13 January

Los
AngelesNew YorkCETBeijingSydney07:30 am10:30 am04:30 pm11:30 pm02:30 am