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Introduction
The task of Novel View Synthesis (NVS)
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Only Pose as Input (Ours)

Treat rendering and scene 
representation as one task
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Approach - Overview

Overview of our method. The scene information is embedded by the 
network weights during Training 



Approach
Stage-1: GenNet
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Approach

• U-Net Style, follow pix2pix [1]

• Loss: L1 norm, Perceptual Loss, Adversarial Loss

[1] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in 
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2017, pp. 5967–5976.

RefineNetCoarse Image Final Image

Stage-2: RefineNet
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Results
Results on Cambridge Landmarks [1]

[1] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for real-time 6-dof camera relocalization,” 
in Proc. IEEE Int. Conf. Comp. Vis., 2015. 



Results
Examples on 7-Scenes [1]

[1] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. W. Fitzgibbon, “Scene coordinate regression forests 
for camera relocaliza- tion in RGB-D images,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2013, pp. 2930–2937. 



Ablation Studies
• Effect of RefineNet • Effect of Perceptual Loss



Conclusion

• A new problem configuration of NVS: take only camera pose as input

• A two-stage training strategy which is consisted of two consecutive 
networks: GenNet and RefineNet, utilizing GAN and perceptual loss.

• Experiments show promising results in generating visually pleasant 
images

• Limitations: should be trained for each scene; distortion and geometric 
disalignment
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