Data Augmentation via Mixed Class Interpolation using Cycle-Consistent Generative Adversarial Networks Applied to PS T1.7 (DAY 2 - Jan 13) Cross-Domain Imagery

Paper # 1401

Hiroshi Sasaki, Chris G. Willcocks, and Toby P. Breckon Durham University

25th International Conference on Pattern Recognition - January 2021

Limited Data Availability

for Non-visible Domain Object Classification / Detection

Infrared (IR), synthetic aparture radars (SAR), X-ray, etc.

Expensive sensors (or export controlled)

Low inter-task availability

Approach - Data Augmentation -(1/2)

Increase non-visible dataset via **image-to-image translation** from visible dataset

Approach - Data Augmentation -(2/2)

- Use CycleGAN^[1]-based model conditioned by image labels (object classes) for class-specific image synthesis
- Infer class-interpolated images to improve Mixup^[2]

[1] J. Zhu, et al "Unpaired image-to-image translation using cycle-consistent adversarial networks," ICCV, 2017.

[2] H. Zhang, et al "mixup: Beyond empirical risk minimization," ICLR, 2018.

Durham

University

Experiment (Dataset Setup)

Statoil/C-CORE Iceberg Classifier Challenge^[3] ➤ Satellite C-band SAR images of ships / icebergs

[3] https://www.kaggle.com/c/statoil-iceberg-classifier-challenge

separate training samples into 3 subsets

- a) Easy to discriminate
- b) Modelate to discriminate
- c) Difficult to discriminate

	Ship				Iceberg			
8	(a)	(b)	(c)	total	(a)	(b)	(c)	total
Test	97	158	171	426	99	137	141	377
Train #1	96	15	17	128	99	13	14	126
Train #2	96	15	17	128	9	137	14	160
Train #3	96	15	17	128	9	13	140	162

Number of samples

ICPR2020 - Data Augmentation via Mixed Class Interpolationusing Cycle-Consistent Generative Adversarial Networks Applied to Cross-Domain Imagery

Experiment (Result)

Train AlexNet^[5] models with 5 different training data conditions & compare the classification performances

	Acc.	Prec.	Rec.	F1
(1) only training dataset w/o data augmentation	0.551	0.562	0.575	0.568
(2) (1)+ 90/180/270 degree rotated training samplaes	0.549	0.554	0.571	0.562
(3) Mixup ^[2] of (1)	0.715	0.739	0.719	0.729
(4) (1) + synthesised images via MixCycleGAN ^[6]	0.730	0.752	0.739	0.745
(5) (1) + synthesised images via our approach	0.754	0.777	0.762	0.769

[5] A. Krizhevsky, et al, "Imagenet classification with deep convolutional neural networks," NeurIPS, 2012.

[6] D. Liang, et al, "Understanding mixup training methods," IEEE Access, vol. 6, pp. 58 774-58 783, 2018.

Conclusion

- A novel data augmentation for non-visible imagery.
- Visible to non-visible domain image translation via CycleGAN-based method.
- Our CycleGAN is conditioned for class-specific image synthesis.
- Class-interpolated image synthesis to improve Mixup.
- Outperforms other traditional data augmentation approaches on a SAR ships/icebergs classification task.

Data Augmentation via Mixed Class Interpolation using Cycle-Consistent Generative Adversarial Networks Applied to PS T1.7 (DAY 2 - Jan 13) Cross-Domain Imagery

Paper # 1401

Hiroshi Sasaki, Chris G. Willcocks, and Toby P. Breckon Durham University

25th International Conference on Pattern Recognition - January 2021