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Introduction

» Existing methods fall to consider complex textures and
geometries In scenes.

Hu et al.[9]

Problems:
loss of local details, distorted object boundaries, and blurry reconstruction.
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Introduction

* |n this work, we proposed an end-to-end multi-scale
residual pyramid attention network.

vl

RGB GT Hu et al.[9 Ours

Our method achieved competitive performance In object boundaries and local detalls.
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Method

« The proposed network architecture:
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Method

« Multi-scale attention context aggregation (MACA)

» We proposed MACA, the module consists of SAM and GAM, which
adaptively learns the similarities between pixels to aggregation the
spatial and scale context information.

» Conv3d X3 — SAM j

-_— Sum fusion— Conv3 X3 —

» GAM “
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Method

 Spatial attention module (SAM)
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Method

» Global attention module (GAM)
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Method

» Residual refinement module (RRM)

» Improved RRM, the module can capture more detalls information to
further refine the scene structure,

I Conv 3 X 3, stride 2
Conv3X3

W
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Method

 Computed the difference between the predicted depth map D! and
the ground-truth G* at each scale. Combing all the L scales, our loss
function for the entire network Is:

L . . .
Loss = z 1(lélepth + lérad + l:lormal)
1=
For each scale, It consists of three terms:
laepen cONsidering the pixel-wise difference between D! and the ground truth G*.
lyraa peNalizing errors around edges.
Lnormar further improving fine details.
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Experiment Results
* Implementation Details

> Initialize the encoder module by pre-trained model on ImageNet, use

SENet as the backbone.
» Adam optimizer with initial learning rate 10™*, reduce 10% every 5 epoch.

f1=0.9, B2 = 0.999 and weight decay as 10™*.
» Network was trained for 20 epochs with a batch size of 4.
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Experiment Results

* Quantitative Evaluation(NYU Depth V2)

TABLE 1
COMPARISONS WITH STATE-OF-THE-ART DEPTH ESTIMATION APPROACHES ON NYU DEPTH V2 DATASET.

Method lower is better higher is better

Abs Rel RMS Logl0 a < 1.25 o < 1.257 o < 1.25°
Eigen et al. [12] 0.215 0.907 — D.611 0.887 0.971
Laina et al, [14] 0.127 0.573 0.055 0.811 0.953 ().988
Xu et al, [26] 0.125 0.593 0.057 0.806 0.952 0.986
Chen et al. [20] 0.138 0.496 - 0.826 0.964 0.990
Fuet al. |16] 0.115 0.509 0.051 0.828 0.965 0.992
Jiao et al. [17] 0.098 0.329 0.040 0.917 0.983 0.996
Hu et al. [9] 0.115 0.530 0.050 0.866 0.975 0.993
Ding et al. [19] 0.101 0.519 0.044 0.847 0.967 0.992
Our Baseline 0.123 0.596 0.056 0.838 0.968 0.992
Our Baseline + MACA 0.121 0.537 0.051 0.854 0.973 0.993
Ours: Baseline + MACA + RRM 0.113 0.525 0.049 0.872 0.974 0.993
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Experiment Results
Quahtatlve Evaluation(NYU Depth V2)

(a) RGB Image (b) Ground Truth ~ (c) Laina et al. [14]  (d) Hu et al. [9] (e) Our baseline urs 13/16



Experiment Results
* Qualitative Evaluation(SUN-RGBD)

(a) RGB Image (b) Ground Truth (¢) Chen et al. [21] (d) Ours
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Conclusion

* We proposed an MRPAN for monocular depth estimation.

* Achieves competitive performance in comparsion with the
state-of-the-art methods, especially the boundaries and local
detalls of Image in complex scenes.
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