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Introduction
• Existing methods fail to consider complex textures and 

geometries in scenes.

RGB GT Hu et al.[9]

Problems:
loss of local details, distorted object boundaries, and blurry reconstruction.
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Introduction
• In this work, we proposed an end-to-end multi-scale 

residual pyramid attention network. 

Our method achieved competitive performance  in object boundaries and local details.

RGB GT OursHu et al.[9]
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Method
• The proposed network architecture:
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Method
• Multi-scale attention context aggregation (MACA) 

➢ We proposed MACA, the module consists of SAM and GAM, which 

adaptively learns the similarities between pixels to aggregation the 

spatial and scale context information. 
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Method
• Spatial attention module (SAM) 
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Method
• Global attention module (GAM)
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Method
• Residual refinement module (RRM) 

➢ Improved RRM, the module can capture more details information to 

further refine the scene structure. 
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Method

• Computed the difference between the predicted depth map 𝐷𝑖 and 

the ground-truth 𝐺𝑖 at each scale. Combing all the L scales, our loss 

function for the entire network is:

𝐿𝑜𝑠𝑠 =෍
𝑖=1

𝐿

(𝑙𝑑𝑒𝑝𝑡ℎ
𝑖 + 𝑙𝑔𝑟𝑎𝑑

𝑖 + 𝑙𝑛𝑜𝑟𝑚𝑎𝑙
𝑖 )

For each scale, It consists of three terms:

𝑙𝑑𝑒𝑝𝑡ℎ considering the pixel-wise difference between 𝐷𝑖 and the ground truth 𝐺𝑖.

𝑙𝑔𝑟𝑎𝑑 penalizing errors around edges.

𝑙𝑛𝑜𝑟𝑚𝑎𝑙 further improving fine details.
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Experiment Results
• Implementation Details

➢ Initialize the encoder module by pre-trained model on ImageNet, use 

SENet as the backbone. 

➢ Adam optimizer with initial learning rate 10−4, reduce 10% every 5 epoch. 

𝛽1 = 0.9, 𝛽2 = 0.999 and weight decay as 10−4.

➢ Network was trained for 20 epochs with a batch size of 4.
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Experiment Results
• Quantitative Evaluation(NYU Depth V2)
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Experiment Results
• Qualitative Evaluation(NYU Depth V2)
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Experiment Results
• Qualitative Evaluation(SUN-RGBD)
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Conclusion

• We proposed an MRPAN for monocular depth estimation.

• Achieves competitive performance in comparsion with the 

state-of-the-art methods, especially the boundaries and local 

details of image in complex scenes.
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Thanks !
Q&A
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