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Introduction
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2D Object Detection

Target: (x, y, w, h) + class

3D Object Detection

Target: (x, y, z, l, w, h, orientation) + class

• More parameters need to be predicted for 3D object detection.

• The orientation of objects has a great influence on the calculation of 3D IoU.
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cupboard2 • Large variety and number of objects

• Large size differences between objects

• Complex spatial positions of objects
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Challenge of Indoor 3D Object Detection

• In cluttered indoor scenes, it is difficult for 3d detectors to accurately predict the location 
and size of objects at the same time.



Related Work
3D Box Encoding
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• Axis Aligned 3D box:

no orientation, (!, ", #, $!, $", $#)

• Oriented 3D box:

original, (!, ", #, %, &, ℎ,()*+,-.-*(,)

8-corners, (!/, "/, #/), *∈[1, 8]

4-corners, ℎ123, ℎ421125, (!/, "/), *∈[1, 4]MV3D[1] AVOD[2]

Object Location Loss

• %2 center loss: The Euclidean distance between proposal and ground truth is used as supervision. 

• IoU loss: The intersection over union[3][4] between proposal and ground truth is used as supervision. 



Methodology
Spherical Encoding of 3D Box

8 corners encoding Spherical encoding

• Spherical encoding: (", $, %, &)
• Based on spherical encoding, the 3D object detection task can be decoupled into the object 

location task and the size prediction task.

• For size and orientation prediction, We adopt method of F-PointNet[5].

[5] Frustum pointnets for 3d object detection from rgb-d data. Charles R Qi, et al. CVPR 2018



Methodology
Influence of Object Size on Object Location
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• ./ center loss:

• Spherical center loss:
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• The distance between ground truth and proposal is the same for objects of different sizes,

but the IoU is different.

• In this case, spherical center loss outputs adaptive localization loss based on object size,

while 82 center loss does not.



[6] Deep hough voting for 3d object detection in point clouds. Charles R Qi, et al. ICCV 2019

Methodology
Geometric Information of Point Cloud:

• Before voting, seeds preserve rich geometric information of the object.

• After voting[6], votes gather in the center of the object, which lose many of the geometric 

features. 

• Seeds are suitable for object size and orientation prediction, while votes are fit for object

location prediction.



Methodology
Overall Structure of S-VoteNet:

[6] Deep hough voting for 3d object detection in point clouds. Charles R Qi, et al. ICCV 2019

• S-VoteNet is built on the basis of VoteNet, which introduces spherical proposal to decouple 

the 3D object detection task.



Experiment
Performance on SUN RGB-D Val Set

• S-VoteNet advances the baseline by 2.6% mAP, which achieves performance second only to ImVoteNet 

without the use of RGB information.



Experiment
Analysis Study

• BoxNet is the baseline of VoteNet, which generates proposals without the voting module.

• VoteNet* is a variant of VoteNet, which decouples 3D object detection task without spherical encoding.

• VoteNet** is the improved version of VoteNet*, which introduces spherical center loss based on VoteNet*.

• S-VoteNet is the improved version of VoteNet**, which uses seeds to predict object size and orientation.



Experiment
Qualitative results
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Qualitative results



Thanks for Listening! 


