

S-VoteNet: Deep Hough Voting with Spherical Proposal for 3D Object Detection

Yanxian Chen¹, Huimin Ma^{1*}, Xi Li², Xiong Luo¹

¹University of Science and Technology Beijing

²Tsinghua University

Introduction

2D Object Detection Target: (x, y, w, h) + class 3D Object Detection Target: (x, y, z, l, w, h, orientation) + class

- More parameters need to be predicted for 3D object detection.
- The orientation of objects has a great influence on the calculation of 3D IoU.

Introduction

Challenge of Indoor 3D Object Detection

- Large variety and number of objects
- Large size differences between objects
- Complex spatial positions of objects

• In cluttered indoor scenes, it is difficult for 3d detectors to accurately predict the location and size of objects at the same time.

Related Work

3D Box Encoding

- TICPR28 Sth INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION Milan, Italy 10 | 15 January 2021
- Axis Aligned 3D box: no orientation, (x, y, z, dx, dy, dz)
- Oriented 3D box: original, (x, y, z, l, w, h, orientation)8-corners, $(x_i, y_i, z_i), i \in [1, 8]$ 4-corners, $h_{top}, h_{bottom}, (x_i, y_i), i \in [1, 4]$

Object Location Loss

- *l*2 center loss: The **Euclidean distance** between proposal and ground truth is used as supervision.
- IoU loss: The intersection over union[3][4] between proposal and ground truth is used as supervision.

[1] Multi-view 3d object detection network for autonomous driving. Xiaozhi Chen, et al. CVPR 2017.

[2] Joint 3d proposal generation and object detection from view aggregation. Ku J, et al. IROS 2018.

[3] Generalized intersection over union: A metric and a loss for bounding box regression .Rezatofighi H, et al. CVPR 2019.

[4] Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. Zheng Z, Wang P, Liu W, et al. AAAI 2020.

Spherical Encoding of 3D Box

8 corners encoding

Spherical encoding

- Spherical encoding: (x, y, z, r)
- Based on spherical encoding, the 3D object detection task can be decoupled into the object location task and the size prediction task.
- For size and orientation prediction, We adopt method of F-PointNet[5].

[5] Frustum pointnets for 3d object detection from rgb-d data. Charles R Qi, et al. CVPR 2018

Methodology

Influence of Object Size on Object Location

• *l*2 center loss:

$$L_{center} = d(c_{pro}, c_{gt})$$

• Spherical center loss:

$$L_{spherical-center} = \frac{d(c_{pro}, c_{gt})}{d(c_{pro}, c_{gt}) + r_{pro} + r_{gt}}$$

- The distance between ground truth and proposal is the same for objects of different sizes, but the IoU is different.
- In this case, spherical center loss outputs adaptive localization loss based on object size, while *l*2 center loss does not.

Geometric Information of Point Cloud:

- Before voting, seeds preserve rich geometric information of the object.
- After voting[6], votes gather in the center of the object, which lose many of the geometric features.
- Seeds are suitable for object size and orientation prediction, while votes are fit for object location prediction.

[6] Deep hough voting for 3d object detection in point clouds. Charles R Qi, et al. ICCV 2019

Methodology

Overall Structure of S-VoteNet:

• S-VoteNet is built on the basis of VoteNet, which introduces spherical proposal to decouple the 3D object detection task.

[6] Deep hough voting for 3d object detection in point clouds. Charles R Qi, et al. ICCV 2019

Performance on SUN RGB-D Val Set

TABLE IPerformance comparison of 3D object detection with previous methods on SUN RGB-D v1 val set.

methods	input	bathtub	bed	bookshelf	chair	desk	dresser	nightstand	sofa	table	toilet	mAP
DSS [16]	$\begin{array}{c} \text{Geo} + \text{RGB} \\ \text{Geo} + \text{RGB} \end{array}$	44.2	78.8	11.9	61.2	20.5	6.4	15.4	53.5	50.3	78.9	42.1
COG [13]		58.3	63.7	31.8	62.2	45.2	15.5	27.4	51.0	<u>51.3</u>	70.1	47.6
2D-driven [4]		43.5	64.5	31.4	48.3	27.9	25.9	41.9	50.4	37.0	80.4	45.1
F-PointNet [8]		44.3	81.1	33.3	64.2	24.7	32.0	58.1	61.1	51.1	90.9	54.0
VoteNet + region feature [6]		71.7	86.1	34.0	74.7	26.0	34.2	64.3	66.5	49.7	88.4	59.6
ImVoteNet [6]		75.9	87.6	41.3	76.7	28.7	41.4	69.9	70.7	51.1	90.5	63.4
VoteNet [7]	Geo only	74.4	83.0	28.8	75.3	22.0	29.8	62.2	64.0	47.3	90.1	57.7
S-VoteNet (ours)	Geo only	78.0	85.6	35.9	74.6	26.9	31.7	65.5	67.6	47.5	89.3	60.3

• S-VoteNet advances the baseline by 2.6% mAP, which achieves performance second only to ImVoteNet without the use of RGB information.

Experiment

Analysis Study

methods	use spherical center loss	use seed	mAP
BoxNet [7]	×	$$	53.0
VoteNet [7]	×	×	57.7
VoteNet*	×	×	58.0
VoteNet**	\checkmark	×	59.5
S-VoteNet			60.3

TABLE IIEFFECTS OF VARIOUS COMPONENTS OF S-VOTENET

- BoxNet is the baseline of VoteNet, which generates proposals without the voting module.
- VoteNet* is a variant of VoteNet, which decouples 3D object detection task without spherical encoding.
- VoteNet** is the improved version of VoteNet*, which introduces spherical center loss based on VoteNet*.
- S-VoteNet is the improved version of VoteNet**, which uses seeds to predict object size and orientation.

Experiment

Qualitative results

Experiment

Qualitative results

Thanks for Listening!