Transformer Reasoning Network for Image-Text Matching and Retrieval

Nicola Messina, Fabrizio Falchi, Andrea Esuli, Giuseppe Amato

ICPR 2020

Efficient Sentence-to-Image Retrieval

Problem

Efficiently retrieve images given a natural language sentence as a query

Challenges

- Produce compact and very informative visual and textual features
 - They should be compared using **cosine similarity** to retrieve the I-T similarity score
 - Can be indexed using already existing text-based or metric-space approaches
- Effectiveness: context awareness is important

Transformer Encoder for I-T Processing

1024-d feature

S(I, T)

 $+ \max_{i'} [\alpha + S(i', c) - S(i, c)]_{+}$

Transformer Encoder Reasoning Network

A tennis player serving a ball on the court

TERN Evaluation

- We used the NDCG metric during evaluation
- It is able to keep into consideration
 - Non-exact matches
 - Highly-semantic aspects of visuals and texts

- Given a pair of sentences, they return a similarity score
- Quite efficient to compute
- SPICE in particular accounts for high-level semantic similarities between sentences

TERN Evaluation

- MS-COCO dataset
 - o 5 human-written sentences for each image

Model	ROUGE-L	SPICE
VSE-0	0.702	0.616
VSE++	0.712	0.617
VSRN	0.723	0.620
TERN (our)	0.725	0.653

Model	ROUGE-L	SPICE
VSE-0 VSE++ VSRN	0.633 0.656 0.676	0.549 0.577 0.596
TERN (our)	0.665	0.600

NDCG, **1K** test set

NDCG, **5K** test set

TERN Evaluation

Query: A large jetliner sitting on top of an airport runway.

Query: An eating area with a table and a few chairs.

= Exact Match (according to COCO GT)

Transformer Encoder Reasoning and Alignment Network

"Fine-grained Visual Textual Alignment for Cross-Modal Retrieval using Transformer Encoders." preprint arXiv:2008.05231 (2020) - submitted to TOMM journal

Model	ROUGE-L	SPICE
TERN	0.725	0.653
TERAN	0.741	0.668

Conclusions

- We introduced the TERN architecture
 - TERN produces high-level multi-modal features that can be used in scalable retrieval setups
 - It uses the power of the transformer encoder for obtaining **context-aware** representations.
- We evaluated the retrieval performances using NDCG
 - Relevances computed using SPICE and ROUGE-L textual similarities
- We showed that by enforcing fine-grained R-W alignment we can obtain:
 - interpretable region-word associations
 - better retrieval effectiveness

Thank You!

nicola.messina@isti.cnr.it

