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Efficient Sentence-to-Image Retrieval
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● Problem
○ Efficiently retrieve images given a natural language sentence as a query

● Challenges
○ Produce compact and very informative visual and textual features

■ They should be compared using cosine similarity to retrieve the I-T similarity score

■ Can be indexed using already existing text-based or metric-space approaches

○ Effectiveness: context awareness is important
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S(i1, q)=0.90 S(i2, q)=0.88 S(i3, q)=0.86 S(i3, q)=0.76

“Player number 8 kicked the
 soccer ball with his foot.”
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Transformer Encoder for I-T Processing
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Transformer Encoder Reasoning Network
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TERN Evaluation
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● We used the NDCG metric during evaluation

● It is able to keep into consideration
○ Non-exact matches

○ Highly-semantic aspects of visuals and texts
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● Given a pair of sentences, they 
return a similarity score

● Quite efficient to compute
● SPICE in particular accounts for 

high-level semantic similarities 
between sentences
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TERN Evaluation
● MS-COCO dataset

○ 5 human-written sentences for each image
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Model ROUGE-L SPICE

VSE-0 0.702 0.616
VSE++ 0.712 0.617
VSRN 0.723 0.620

TERN (our) 0.725 0.653

Model ROUGE-L SPICE

VSE-0 0.633 0.549
VSE++ 0.656 0.577
VSRN 0.676 0.596

TERN (our) 0.665 0.600

NDCG, 1K test set NDCG, 5K test set
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TERN Evaluation
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Query: A large jetliner sitting on top of an airport runway.

Query: An eating area with a table and a few chairs.

= Exact Match (according to COCO GT)
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Transformer Encoder Reasoning and Alignment Network
"Fine-grained Visual Textual Alignment for Cross-Modal Retrieval using Transformer Encoders."

preprint arXiv:2008.05231 (2020) - submitted to TOMM journal
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Model ROUGE-L SPICE

TERN 0.725 0.653

TERAN 0.741 0.668
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Conclusions
● We introduced the TERN architecture

○ TERN produces high-level multi-modal features that can be used in scalable retrieval setups

○ It uses the power of the transformer encoder for obtaining context-aware representations.

● We evaluated the retrieval performances using NDCG
○ Relevances computed using SPICE and ROUGE-L textual similarities

● We showed that by enforcing fine-grained R-W alignment we can obtain:
○ interpretable region-word associations

○ better retrieval effectiveness
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