

Improving Image Matching with Varied Illumination

Sarah Braeger

Hassan Foroosh

Computational Imaging Lab University of Central Florida

Key Components

- ► Vary lighting to increase features.
- Don't physically capture lighting: generate images with relighting network.
- Merge features across lighting conditions.
- ► Increase **number of correct matches** by 5.5*x* for indoor stereo images. Retain similar precision.

Insight

- ► Varying lighting gives different features for matching.
- ► Synthesize lighting changes with a relighting network.

Figure: SIFT keypoints on relit generated images for State Kitchen 7.

- Generate images with a pretrained relighting network [1].
- ► Input single image per view A: {(I₀^A, L₀)}, where L₀ is the specified lighting condition for index 0.
- R_j^A is a reconstructed image for view A for lighting condition $L_j \in \Omega$.
- Total synthesized lighting conditions: $|\Omega| = 25$.

- Match pair of views A and B for the set of relit images R^A and R^B.
- Performed per lighting condition L_j in the |Ω| possible, forming a set of matches M_j.

Match Merging

► The set of merged matches **M**:

$$\mathbf{M} = \bigcup_{\mathbf{x}^{A}=0}^{N} \operatorname{argmax}_{m_{j \in |\Omega|}} quality(m_{j})$$
(1)

- \mathbf{x}^A : pixel coordinate from view I^A .
- ► N: total number of pixels in I^A, m_j: a match in the set of matches M_j.

Handling Match Merging Conflicts

- ▶ When a match m₁ from M_j conflicts with the same pixel coordinate x^A_i from a match m₂:
- ► Select the match with the highest quality = 1 distance, defined by Lowe's ratio test.

- We experiment with the recently released multi-illumination dataset [1], manually selecting pairs with sufficient stereo overlap.
- We define ground truth as those matches which satisfy the epipolar constraint:

$$x'^T F x = 0 \tag{2}$$

► *F* is estimated from the inlier SIFT correspondences of input image capture pair for lighting condition *L*0.

Comparison

Figure: The Kingston Living 5-6 scene view pair with set of SIFT matches. The **top row** is on the input single lit pair. The **bottom row** is the result of our method, those matches merged over 25 lighting conditions synthesized by relighting.

Precision

Figure: Precision for top-100 matches for L0 and merged set **M** over all lighting conditions.

Number of Correct Matches

Figure: Correct matches for input capture pair at L0 and merged set \mathbf{M} for all scene view pairs.

Comparing Correct Matches

Figure: The Kingston Kidsroom 6_7 scene view pair.

• Our match density is higher from nearby local gradients.

Comprehensive Comparison

Features	Average	Std. Dev.
SIFT0	38.270	41.441
VGG16	68.216	28.268
OURS	212.189	198.612

Table: Number of correct matches with SIFT on input capture pair only, VGG16 features, and our merged matches.

References

- L. Murmann, M. Gharbi, M. Aittala, and F. Durand, "A multi-illumination dataset of indoor object appearance," in 2019 IEEE International Conference on Computer Vision (ICCV), Oct 2019.
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in *International Conference on Learning Representations*, 2015.