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Form understanding
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Related works for entity labeling
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Methods Drawbacks
Heuristic methods ° Scalability/generalizability towards large datasets is limited

° Not generalization
° Quality of output depends much on the condition of
erroneous output from earlier steps (text lines recognition and
optical character recognition)

Deep learning-based segmentation * ° Hard to model the relation linking between entities
Information extraction with Graph Neural Networks * ° Hard to incorporate both semantic and spatial information

° Quality of output depends much on the condition of
erroneous output from earlier steps (text lines recognition and
optical character recognition)

* End-to-End Information Extraction by Character-Level Embedding and Multi-Stage Attentional U-Net
* An Invoice Reading System Using a Graph Convolutional Network 3



Utilize the strengths of segmentation and graph based methods together

Layout and OCR result Chargrid Segmentation outputs  Graph to be used with GNN
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Segmentation based methods has limited relational reasoning

Graph is sensitive to misaligned line & merged/splitted error
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After

Segmentation outputs used to construct input Graph for GNN

Entities are re-segmented and constructed spatial relations,
which overcomes layout errors.



The challenging problem of combining two methods

Requirements

Must do both entity Must
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Over MSAU-PAF architecture
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Our solution: Link representation with composite fields / PIF - PAF

PIF (Part Intensity Field) e predicts the confidence score, the precise location and the size of the entity.

PAF (Part Association Field) e predicts associations between entities, which is of a new composite structure, predict a
confidence, two vectors to the two entities.

e refines entity endpoint locations from PIF with regressions, which would resolve joint
locations of close-by text-lines (entities) precisely.

* PifPaf: Composite Fields for Human Pose Estimation, Sven Kreiss, Lorenzo Bertoni, Alexandre Alahi



Visualizing entities and their associations in PIF/PAF




What we gain from PIF/PAF

Before

Limited in localizing entities with segmentation
masks.

No way to represent relations between entities

Accumulation errors due to link prediction is
performed after entity detection.

Now

Part intensity field (PIF) detects and precisely localize
entities with confidence maps

Part association field (PAF) to associate all detected
entities from PIF with composite fields

Join supervision with both entity classification and
link prediction.



Even with new representation from PAF, we still need to improve model backbone

Enhance
long-range
information
propagation for
link-prediction

Deal with dense Better context

documents representation
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There is no universal solution, so we gather several mechanisms to solve each of these 10



Enhance information propagation with corner pooling

Corner pooling localizes the keypoint locations better by encoding
explicit prior features in horizontally and vertically.
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* CornerNet: Detecting Objects as Paired Keypoints
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Deal with dense documents by coordinate convolution

Convolutional Layer CoordConv Layer
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Using of extra coordinate channels, improve convolution’s ability against perturbations

of translation,
These geometric information features provide more precisely location of each entities

for relational reasoning
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* An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution



Experiment setup

® Experiment setup:

Dataset FUNSD (IBM Form understanding dataset), with tasks:
* Node classification
* Link prediction
Number of samples: (English business forms)
149 train - 50 test

Train/Val split ratio 80/20

Metrics F1 score, Precision, Recall

Baselines GraphCNN-+Link prediction, MSAU, MLP, Heuristic rules
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https://guillaumejaume.github.io/FUNSD/

Results / Entity labeling

Methods

MLP (BERT embedding)
MSAU (one-hot character)
LayoutLM(base)

MSAU-PAF (one-hot character) (ours)

Metric (F1 score)
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Results / Entity linking

Methods

MLP (BERT embedding + Positional feat)
(Ground-truth entities class)

GraphCNN with Link prediction
(Ground-truth entities class)

Heuristic (with MSAU-PAF middle output)
Heuristic (with Ground-truth entities class)

MSAU-PAF (Joint classification and link prediction) (ours)
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Ablation study

Model Entity-Labeling Entity-Linking
(F1-Score) (F1-Score)
MSAU_PAF 0.80 0.72
MSAU_PAF + CoordConv 0.82 0.74
MSAU_PAF + Corner Pooling 0.81 0.73
MSAU_PAF + Corner Pooling + | 0.83 0.75

CoordConv
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Conclusion

® \We have demonstrated:

A new problem formulation for general form understanding tasks, which can bring the possibility
of general solution without any retrain.

Various improvements of MSAU-PAF

A new model which can solve jointly both entity segmentation and link prediction.

®  Future works

Extend MSAU-PAF to other document structure parsing problemes, i.e table structure recognition,
document de-warping.

Using the output as part of interpretable Key-Value (to comply with the formulation of visual
question answering).
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