

Classification of spatially enriched pixel time series with convolutional neural networks

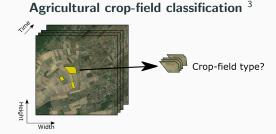
Mohamed Chelali*, Camille Kurtz*, Anne Puissant+ and Nicole Vincent*

- * Université de Paris
- + Université de Strasbourg

ICPR - January 10-15, 2020

Introduction: Context and objectives

- Satellite Image Time Series (SITS): 2D + t data
- Thematic usage of SITS
 - Land use mapping ¹
 - Territories management ²
 - Change detection



Focus on spatial and temporal domains during analysis

 $^{^{1}}$ J. Inglada et al. Operational high resolution land cover map production at the country scale using satellite image time series. RS 2017.

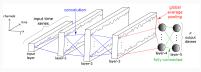
 $^{^{2}}$ C. Weber and A. Puissant. Urbanization pressure and modeling of urban growth: example of the tunis metropolitan area. RSE 2003.

³M. Chelali et al. Image time series classification based on a planar spatio-temporal data representation, VISAPP 2020.

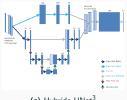
Deep neural network for SITS analysis

- Temporal pixel analysis
 - Deep neural network methods: LSTM, TempCNN
 - Recurrence plot
- Hybrid strategy
 - 2D CNN + 1D CNN
- Image sequences analysis
 - 3D CNN

(b) Convolution 3D²



(a) TempCNN¹



(c) Hybride UNet³

¹C. Pelletier. et al. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. RS, 2019.

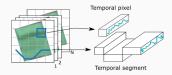
²N. Audebert, et al. Deep learning for classification of hyperspectral data: A comparative review. IGRSL, 2019.

³D. lenco, et al. Land cover classification via multitemporal spatial data by deep recurrent neural networks. IGRSL, 2017.

- Enriching temporal pixels with spatial information by using 1D segments leading to a planar representation
- A 2 step approach
 - Multi-segments extraction in the 2D domain
 - Definition of temporal segments
 - Classification of the segments
 - · Decision process at crop-field level

Data representation:

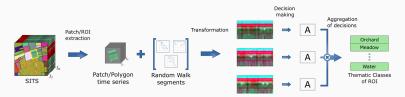
• Segment construction is based on Random Walk method



- Enriching temporal pixels with spatial information by using 1D segments leading to a planar representation
- A 2 step approach
 - Multi-segments extraction in the 2D domain
 - Definition of temporal segments
 - Classification of the segments
 - · Decision process at crop-field level

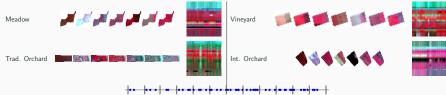
Segment labeling:

- Enriching temporal pixels with spatial information by using 1D segments leading to a planar representation
- A 2 step approach
 - Multi-segments extraction in the 2D domain
 - · Definition of temporal segments
 - · Classification of the segments
 - · Decision process at crop-field level



Decision process:

Experimental study: Agricultural crop-field classification from SITS



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

- Satellite Image Time Series from SENTINEL-2 in year 2017
 - 50 images; Tile 32ULU (Zone of Grand Est Alsace); Correction at level 2A
- Ground truth: European delineation of agricultural crop-fields

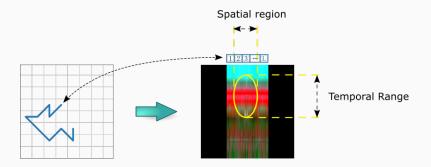
Proposed method scores

Lengths L of the segments	percentage	OA	STD
	10	91.97	1.11
Random pixels(100)	20	91.72	2.72
Kandom pixels(100)	50	92.29	0.60
	70	91.75	0.61
	10	91.07	2.53
RW(50)	20	93.80	1.57
111(50)	50	94.06	1.44
	70	94.80	1.57
	10	92.50	1.05
RW(100)	20	93.20	0.65
//// (100)	50	94.21	1.19
	70	94.64	0.80

TempCNN scores

Nb filt.	16	32	64	128	256	512	1024
	92.18						
STD	0.62	0.59	0.85	0.68	1.22	0.89	1.01

• Use of $GradCAM++^1$ to get the most used region of the planar representation



- Temporal Attention: Choose a significant temporal range
- Spatial Attention: Explaining the usefulness of the spatial space

¹A. Chattopadhyay, A. Sarkar, P. Howlader, V. N. Balasubramanian, Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks, in: WACV, Procs., 2018

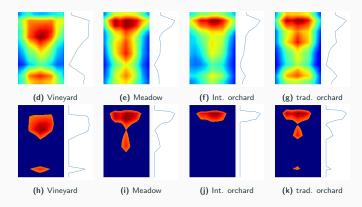
Method

1 - Capture the temporal attention, thanks to the thresholding process

2 - Restriction of the temporal domain defines masks used to classify data

New temporal range [0; 120]

	224 dates		time restriction to [0,120]	
	OA	STD	OA	STD
RW(100)	93.00	2.44	94.0	2.54



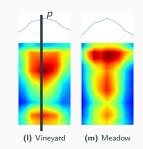
Attention mechanism: Spatial attention

1 - Capture the maximum spatial attention of the pixel p

2 - Attribute the maximum spatial attention of p from N_{sec} planar representations to p position

3 - Create a semantic map by attributing a color for each maximal attention of C classes

Meadows



Intensive orchards

Conclusion

- Proposition of a spatio-temporal representation of image time series
 - Use of a 2D CNN to learn spatio-temporal features
 - Use of a pretrained model, e.g. trained on ImageNet dataset
- Proposition of an attention mechanism
 - To analyze the temporal domain
 - To generate a semantic segmentation

Perspectives

- · Integrate the attention during the training
- Involve the framework in another domain, such as gait recognition in video.

Classification of spatially enriched pixel time series with convolutional neural networks

Mohamed Chelali*, Camille Kurtz*, Anne Puissant+ and Nicole Vincent*

- * Université de Paris
- + Université de Strasbourg

ICPR - January 10-15, 2020