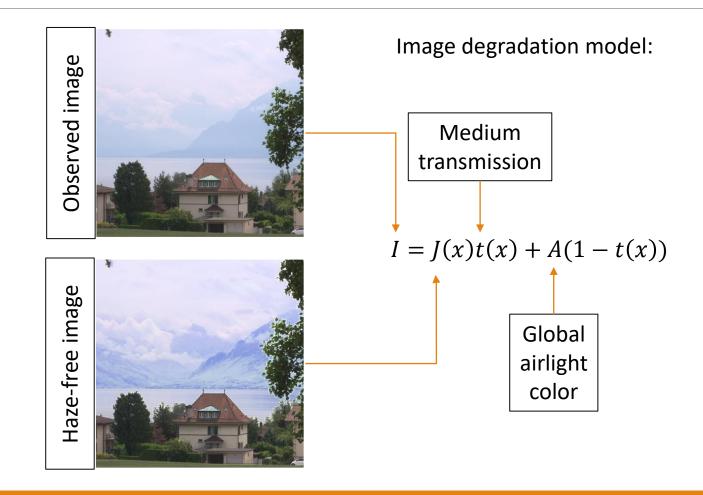
## Near-Infrared Depth-Independent Image Dehazing using Haar Wavelets


SUMIT LAHA

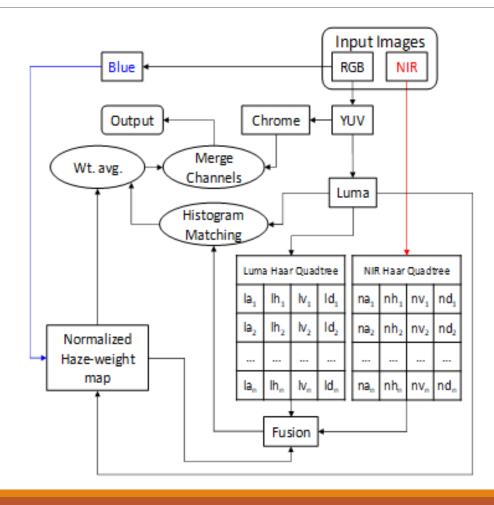
COMPUTATIONAL IMAGING LAB., DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CENTRAL FLORIDA, ORLANDO, FL, USA.

#### Contents

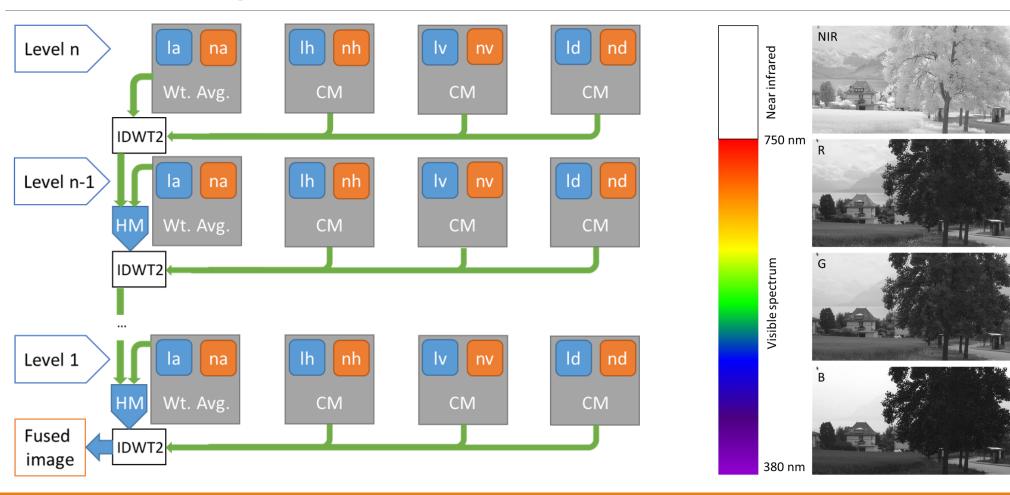
- 1. Image dehazing
- 2. Conventional methods
  - a) Single-Image based methods
  - b) Near infrared image based methods
- 3. Proposed approach
- 4. Computational results
  - a) Qualitative analysis
  - b) Quantitative analysis
- 5. Conclusion

## Image dehazing

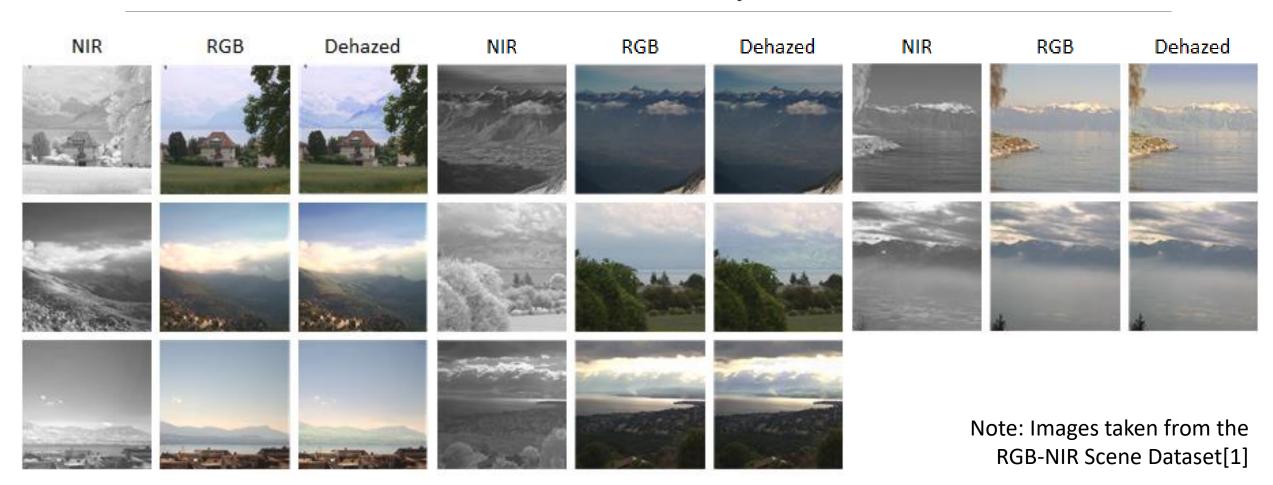



## Conventional methods: Based on Single-Image

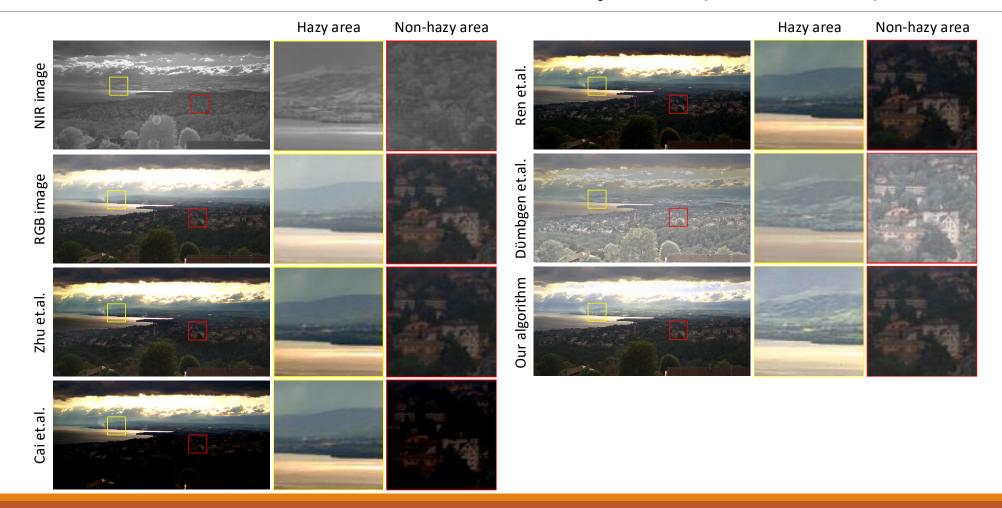
| <b>Authors and References</b> | Approach                                                                                                 | Comments                                                                                                                                                                                 |
|-------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ren et.al. (2016)             | A multi-scale deep network based on hazy images and corresponding transmission maps                      | <ul> <li>Uses both coarse-scale net and fine-scale net</li> <li>Superior performance on both synthetic and real-world images</li> </ul>                                                  |
| Cai et.al. (2016)             | An end-to-end deep network called DehazeNet by estimating medium transmission map                        | Uses a novel nonlinear activation function in<br>DehazeNet                                                                                                                               |
| He et.al. (2016)              | Difference-structure-preservation prior to produce an optimal transmission map from a single input image | Utilizing the optical model and modifying initial transmission map                                                                                                                       |
| Zhu et.al. (2015)             | Color attenuation prior algorithm from a single input hazy image                                         | Superior in terms of both efficiency and the dehazing effect                                                                                                                             |
| Fattal (2014)                 | Markov random field model augmented with connection between pixels of similar attributes                 | Producing complete and regularized transmission maps given noisy and scattered estimates                                                                                                 |
| He et.al. (2010)              | Image prior-dark channel prior to remove haze from a single input image                                  | Most local patches in outdoor haze-free images with some pixels of very low intensity in at least one color channel                                                                      |
| Tan (2008)                    | Cost function using Markov random fields, optimized by graph-cuts and belief propagation                 | <ul> <li>Applicable for the neighboring pixels with identical airlight values</li> <li>Produces unrealistic over-enhanced images</li> <li>Used for both color and gray images</li> </ul> |


# Conventional methods: Based on Near-infrared Image

| Authors and References | Approach                                                                                                           | Comments                                                                                                           |
|------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Dümbgen et.al. (2018)  | Hyperspectral fusion of RGB and NIR images considering intensity inconsistencies for photorealistic image dehazing | Dehazing results on real images with no radiance or artifacts in hazy regions                                      |
| Jang and Park (2017)   | Fusing the HF components of the RGB and NIR images in a local patch of hazy images                                 | Enhancing the detail layer of a hazy RGB image while maintaining the base layer using single image dehazing method |
| Son and Zhang (2017)   | Coloring method through a contrast-<br>preserving local linear mapping model                                       | Enable to transfer the colors from the RGB image to the generated NIR image                                        |
| Feng et.al. (2013)     | Utilizing the dissimilarity between RGB and NIR for airlight color estimation, followed by optimization framework  | Improving the detail recovery and the color distribution of images                                                 |
| Schaul et.al. (2009)   | Multiresolution approach using edge-preserving filters to minimize artifacts                                       | Dehazed color image output without requiring hazing, airlight detection or depth map generation                    |

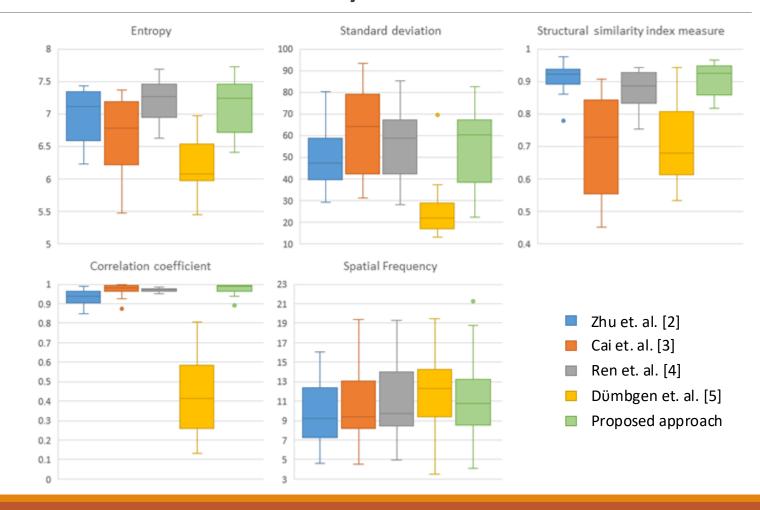

### Proposed method




#### Fusion algorithm



## Results: Qualitative Analysis




#### Results: Qualitative Analysis (contd.)



#### Results: Quantitative analysis

➤ Based on different fusion metrics:



#### Results: Quantitative analysis (contd.)

> Based on the blind measures of Hautière et.al.'s method[6] (best values are indicated in bold):

|                   |           | Zhu et.al. | Cai et.al. | Ren et.al. | Dümbgen et.al | Proposed |
|-------------------|-----------|------------|------------|------------|---------------|----------|
| country/0000_rgb  | e         | -0.024     | -0.003     | 0.063      | -0.220        | 0.043    |
|                   | $\sigma$  | 0          | 28.625     | 0.345      | 0             | 0        |
|                   | $ar{r}$   | 0.967      | 0.806      | 1.033      | 1.084         | 1.104    |
| country/0008_rgb  | e         | 1.016      | 0.952      | 0.784      | -0.056        | 0.621    |
|                   | $\sigma$  | 0          | 0.002      | 0.027      | 0             | 0        |
|                   | $ar{r}$   | 1.462      | 1.310      | 1.456      | 1.556         | 1.809    |
|                   | e         | 0.013      | -0.101     | 0.014      | -0.124        | 0.137    |
| country/0021_rgb  | $\sigma$  | 0          | 8.752      | 0.004      | 0             | 0        |
|                   | $\bar{r}$ | 1.033      | 1.073      | 1.019      | 1.592         | 1.668    |
| country/0039_rgb  | e         | 0.178      | -0.199     | 0.370      | -0.030        | 0.200    |
|                   | $\sigma$  | 0          | 38.437     | 1.318      | 0             | 0        |
|                   | $\bar{r}$ | 1.027      | 0.865      | 1.119      | 2.581         | 1.270    |
| mountain/0000_rgb | e         | 0.068      | -0.0134    | 0.273      | 0.211         | 0.191    |
|                   | $\sigma$  | 0          | 26.381     | 2.639      | 0             | 0        |
|                   | $\bar{r}$ | 1.017      | 0.790      | 1.048      | 3.704         | 1.260    |

#### Conclusion

- We address the task of image dehazing by using a pair of RGB and NIR images.
- We design a depth-independent image dehazing fusion algorithm using the Haar wavelets that combines color information from RGB image and edge information from its corresponding NIR image.
- We devise a method of generating a probability-based haze map which properly weights the color and edge information to overcome the presence of artifacts that produce overenhanced unrealistic images.
- Experimental results demonstrate the effectiveness of our proposed method over the stateof-the-art methods with the final recovered images having better color distribution and revealing more details on benchmark scenes.

#### References

- 1) M. Brown and S. Süsstrunk, "Multi-spectral sift for scene category recognition," in CVPR 2011. IEEE, 2011, pp. 177–184.
- 2) Q. Zhu, J. Mai, and L. Shao, "A fast single image haze removal algorithm using color attenuation prior," IEEE transactions on image processing, vol. 24, no. 11, pp. 3522–3533, 2015.
- 3) B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, "Dehazenet: An end-to-end system for single image haze removal," IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5187–5198, 2016.
- 4) W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M.-H. Yang, "Single image dehazing via multiscale convolutional neural networks," in European conference on computer vision. Springer, 2016, pp. 154–169.
- 5) F. Dümbgen, M. E. Helou, N. Gucevska, and S. Süsstrunk, "Near-infrared fusion for photorealistic image dehazing," Electronic Imaging, vol. 2018, no. 16, pp. 321–1, 2018.
- 6) N. Hautière, J.-P. Tarel, D. Aubert, and E. Dumont, "Blind contrast enhancement assessment by gradient ratioing at visible edges," Image Analysis & Stereology, vol. 27, no. 2, pp. 87–95, 2008.

#### THANK YOU