Story comparison for estimating field of view overlap in a video collection

ICPR 2020 - Oral Presentation

January 11th 2021

Institut de Recherche en Informatique de Toulouse (IRIT)

Thierry Malon (speaker) Sylvie Chambon Alain Crouzil Vincent Charvillat

Overview of the proposed approach

Goal: automatically finding videos of a collection that have overlapping fields of view

Hypothesis: static cameras and temporally synchronised videos, no other metadata

Detection step

Detection: using 3 different existing CNN approaches (SSD [Liu, 2016], Mask-RCNN [He, 2017], YOLOv3 [Redmon, 2018])

Descriptors: using 3 different existing appearance descriptors (HOG [Dalal, 2005], ColorNames [Yang, 2014], Latent representation of Resnet18 [He, 2016])

Definition of a region story

Story of a region: list of objects (category + appearance descriptor) detected at regular time steps in the region

Comparison between stories

Distance between stories: proportion of objects from each story which have a correspondent object in the spatiotemporal neighborhood of the other story

Multiresolution

(c) s = 2

To avoid comparing all possible region pairs, we compare regions at different scales and keep on comparing at a thinner scale if the distance if neither in the accepted link interval (in green) nor in the rejected link interval (in red)

 $d(S_R, S_{R'}) = 0.809$ $d(S_R, S_{R'}) = 0.992$ (a) s = 1(b) s = 2 $d(S_R, S_{R'}) = 0.573$ $d(S_R, S_{R'}) = 0.183$

(d) s = 3

Experiments

Datasets: multiview datasets (ToCaDa, EPFL, MEVA, Youtube videos)

Evaluation: F1 score of the overlap links between videos

False Negative (FN)

True Negative (TN)

Precision = TP / (TP + TN)

Recall = TP / (TP + FN)

F1 score = 2 × Precision × Recall / (Precision + Recall)

	SSD				Mask-RCNN					YOLOv3				
Dataset	base	ctg	ctgcn	ctghg	ctgld	base	ctg	ctgcn	ctghg	ctgld base	ctg	ctgcn	ctghg	ctgld
Live Cameras	19	22	27	25	25	80	100	100	100	100 80	100	100	100	100
MEVA	28	29	32	30	35	59	60	67	62	80 59	59	65	68	76
EPFL	56	56	64	59	67	61	61	71	65	79 63	63	74	66	81
ToCaDa	25	29	34	32	35	83	87	88	87	88 85	88	89	88	90
All real videos	16	19	21	20	23	32	36	43	39	47 35	38	47	44	51

Overlap graph: overlap links found on a subset of the dataset

Questions

(a) s = 1

(c) s = 2

Problem statement

From a collection of videos, how to automatically