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Our Contributions in Brief

• Inhibitory Neurons first proposed in 2003
• Inspired by neuro-biological research

• Well suited to detecting contours and texture changes

• Propose new Inhibitory Convolutional Block (ICB)
• Updated form of inhibitory neuron 

• Works in modern deep learning frameworks

• ICB Enables lateral inhibition to  be added to existing DNN models
• No need to retrain from scratch, can just fine-tune

• Fast and efficient for model re-use

• Applications in object detection and semantic segmentation
• State-of-art results on Aeroscape dataset for semantic segmentation:

• 13.4% better than a similar model without ICB
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Context: ROCSAFE Project

Remotely Operated CBRNe Scene Assessment and Forensic Examination 

• Horizon 2020 Research & Innovation Project

• 13 partners across Europe, led by NUI Galway

Innovations in Robotics, Sensors and AI to keep humans safe in potentially 
dangerous situations

• Assess the scene to quantify threats

• Rather than sending crime scene 
investigators into hazardous 
situations, send in drones and 
other robotic systems with 
appropriate sensors and AI
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Task: Pixel-Level Semantic Segmentation

Goal: assign a colour to every pixel in an image, based on what that pixel represents
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Challenge and Objectives

• The challenge:

• Deep models like VGG and ResNet have millions of parameters

• Semantic Segmentation needs large amount of labelled data to train:
for hazardous crime scene situations, such data is hard to obtain

• Fine-tuning and transfer learning can help

• Make use of models that were trained on less specialized datasets

• Therefore, our objectives are:

• Develop an approach to semantic segmentation that works better than 
current state of the art

• Make use of existing deep models

• Improve speed
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Background: Lateral Inhibition

• Lateral Inhibition:

• Capacity of an excited neuron to reduce the activity of its 
neighbours [1-3]

• Excited neurons are called inhibitory neurons 

• Located immediately outside the receptive field 
of a neuron 

• Result: an inhibitory field surrounding the 
receptive field [4]

• Can improve texture analysis by 
ignoring the inner texture contours
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Related Work

▪ LIPNET [4-5]

• lateral inhibition used in a neural network for image classification and 
segmentation 

• Bottom-up approach that removes the neighbouring neuron's impact by 
subtracting it

▪ Others

• Contour detection [1] - 2003

• Image segmentation [4] - 2008

• Face detection [5] - 2013

• Recently: deep CNN for saliency detection [6] - 2018
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Proposed Inhibitory Convolutional Block (ICB)

Output Feature 
Map size N x N

Input Size 
N x N

CI = 
Conv_5x5

CR = 
Conv_3x3

C1 = CI - CR

CInhib = CR - C1

Activation Layer

Batch 
Normalization
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Inhibitory Convolutional Block, Cont’d

Enhanced inhibitory-VGG16 
model (ICB-VGG16)

Applicable on all models 
where we have a 
Convolutional Layer
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Experiments: Benchmark Datasets

Object Classification

▪ Models enhanced: VGG16 [7] and ResNet [8]

▪ Datasets: CIFAR-10 & CIFAR-100 datasets
• 50,000 training and 10,000 testing images

• Augmented with horizontal flipping, rotation ±15°, vertical/horizontal shifts 10%. 

Semantic Segmentation 

▪ Models enhanced: VGG16 and ResNet

▪ Dataset: Aeroscape of aerial view images [9]
• 3269 images, 12 categories

• Taken from 5 - 50 meters above ground level

• Augmentation: horizontally flipping
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Results : CIFAR-10 Object Classification

Name of Model Layers Accuracy

BL-VGG16* 16 93.43

ICB-VGG16 16 93.62

BL-ResNet-BS32* 20 90.31

BL-ResNet-BS200* 20 90.60

ICB-ResNet-BS200* 20 91.63

Inhi-ResNet-DO-0.3 20 92.21

ICB-ResNet-DO-0.3-Frac 20 92.91

ResNet [8] 110 93.57

BL, ICB and DO represent Baseline, Inhibitory Conv Block, and Dropout Layer, respectively.
* Indicates baseline model trained by ourselves.
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Results: CIFAR-100 Object Classification

ICB, Aver, and Frac represent Inhibitory Conv Block model, Average, and Fractional, respectively

* Indicates a baseline model trained by ourselves

Name of Model Layers Accuracy

BL-VGG16* 16 69.88

ICB-VGG16 16 71.28

BL-ResNet-Aver* 20 66.22

ResNet-DO-0.3-Aver 20 66.85

ICB-ResNet-DO-0.3-Aver 20 66.96

ICB-ResNet-DO-0.3-Frac 20 69.48
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Results: Aeorscape Semantic Segmentation

Comparison of our inhibitory model vs published state-of-the-art

SS, IBH, FT1, and FFT stands for Semantic Segmentation, Inhibitory Conv Block, 
Fine Tuned on 1 layer), and Fully Fine Tuned (all layers)

Model Single Model/Ensemble mIoU

FCN-Imagenet-8s [9] Ensemble 47.56

SS-VGG16-FFT Single 51.00

FCN-Ensemble-SingleSource [9] Ensemble 53.08

FCN-Ensemble-MultiSource [9] Ensemble 57.08

SS-IHB-VGG16-FFT Single 64.43
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Results: Aeorscape Semantic Segmentation
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Results – Semantic Segmentation

a) Original Images

b) Ground Truth

c) Predicted
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Conclusions

• We have proposed the Inhibitory Convolutional Block: 
a new approach for reducing the time to fine-tune deep learning models

• Draws on prior work on receptive fields and inhibitory fields

• General mechanism that can be applied to modify existing CNN architectures in order to 
introduce inhibitory neurons.

• Evaluation:
• Strong results on object recognition datasets 

• State-of-the-art results for semantic segmentation of aerial images

• Key benefits:
• Facilitates re-use of models that are implemented in Keras and Tensorflow

• Fine-tuning for new applications is much faster than existing approaches. 

• Model re-use and fast learning both lead to lower GPU utilization, reducing energy 
consumption for the model training process, with consequent environmental benefits
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Prof. Michael Madden
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