Enhancing Semantic Segmentation of Aerial Images with Inhibitory Neurons

Ihsan Ullah, Sean Reilly, Michael G Madden

Machine Learning & Data Mining Research Group School of Computer Science, National University of Ireland Galway

25th International Conference on Pattern Recognition, Milan/Online, 10-15 January 2021

Outline of Talk

Our Contributions in Brief Task: Semantic Segmentation **Context: ROCSAFE Project Objective:** Better Semantic Segmentation while Re-using Existing Models Solution: Inhibitory Convolutional Block Results Conclusions

- Inhibitory Neurons first proposed in 2003
 - Inspired by neuro-biological research
 - Well suited to detecting contours and texture changes
- Propose new Inhibitory Convolutional Block (ICB)
 - Updated form of inhibitory neuron
 - Works in modern deep learning frameworks
- ICB Enables lateral inhibition to be added to existing DNN models
 - No need to retrain from scratch, can just fine-tune
 - Fast and efficient for model re-use
- Applications in object detection and semantic segmentation
 - State-of-art results on Aeroscape dataset for semantic segmentation:
 - 13.4% better than a similar model without ICB

external mobile or permanent lab

Remotely Operated CBRNe Scene Assessment and Forensic Examination

- Horizon 2020 Research & Innovation Project
- 13 partners across Europe, led by NUI Galway

Innovations in Robotics, Sensors and AI to keep humans safe in potentially dangerous situations Video, images, relayed to Central to finding zone of interest and some symptotic

- Assess the scene to quantify threats
- Rather than sending crime scene investigators into hazardous situations, send in drones and other robotic systems with appropriate sensors and Al

Task: Pixel-Level Semantic Segmentation

Goal: assign a colour to every pixel in an image, based on what that pixel represents

- The challenge:
 - Deep models like VGG and ResNet have millions of parameters
 - Semantic Segmentation needs large amount of labelled data to train: for hazardous crime scene situations, such data is hard to obtain
- Fine-tuning and transfer learning can help
 - Make use of models that were trained on less specialized datasets
- Therefore, our objectives are:
 - Develop an approach to semantic segmentation that works better than current state of the art
 - Make use of existing deep models
 - Improve speed

Background: Lateral Inhibition

- Lateral Inhibition:
 - Capacity of an excited neuron to reduce the activity of its neighbours [1-3]
 - Excited neurons are called inhibitory neurons
 - Located immediately outside the receptive field of a neuron
- Result: an inhibitory field surrounding the receptive field [4]
 - Can improve texture analysis by ignoring the inner texture contours

Related Work

- LIPNET [4-5]
 - lateral inhibition used in a neural network for image classification and segmentation
 - Bottom-up approach that removes the neighbouring neuron's impact by subtracting it
- Others
 - Contour detection [1] 2003
 - Image segmentation [4] 2008
 - Face detection [5] 2013
 - Recently: deep CNN for saliency detection [6] 2018

Proposed Inhibitory Convolutional Block (ICB)

Inhibitory Convolutional Block, Cont'd

Enhanced inhibitory-VGG16 model (ICB-VGG16)

Applicable on all models where we have a Convolutional Layer

Experiments: Benchmark Datasets

Object Classification

- Models enhanced: VGG16 [7] and ResNet [8]
- Datasets: CIFAR-10 & CIFAR-100 datasets
 - 50,000 training and 10,000 testing images
 - Augmented with horizontal flipping, rotation ±15°, vertical/horizontal shifts 10%.

Semantic Segmentation

- Models enhanced: VGG16 and ResNet
- Dataset: Aeroscape of aerial view images [9]
 - 3269 images, 12 categories
 - Taken from 5 50 meters above ground level
 - Augmentation: horizontally flipping

Results : CIFAR-10 Object Classification

Name of Model	Layers	Accuracy
BL-VGG16*	16	93.43
ICB-VGG16	16	93.62
BL-ResNet-BS32*	20	90.31
BL-ResNet-BS200*	20	90.60
ICB-ResNet-BS200*	20	91.63
Inhi-ResNet-DO-0.3	20	92.21
ICB-ResNet-DO-0.3-Frac	20	92.91
ResNet [8]	110	93.57

BL, ICB and DO represent Baseline, Inhibitory Conv Block, and Dropout Layer, respectively. * Indicates baseline model trained by ourselves.

Results: CIFAR-100 Object Classification

Name of Model	Layers	Accuracy
BL-VGG16*	16	69.88
ICB-VGG16	16	71.28
BL-ResNet-Aver*	20	66.22
ResNet-DO-0.3-Aver	20	66.85
ICB-ResNet-DO-0.3-Aver	20	66.96
ICB-ResNet-DO-0.3-Frac	20	69.48

ICB, Aver, and Frac represent Inhibitory Conv Block model, Average, and Fractional, respectively * Indicates a baseline model trained by ourselves

Comparison of our inhibitory model vs published state-of-the-art

Model	Single Model/Ensemble	mIoU
FCN-Imagenet-8s [9]	Ensemble	47.56
SS-VGG16-FFT	Single	51.00
FCN-Ensemble-SingleSource [9]	Ensemble	53.08
FCN-Ensemble-MultiSource [9]	Ensemble	57.08
SS-IHB-VGG16-FFT	Single	64.43

SS, IBH, FT1, and FFT stands for Semantic Segmentation, Inhibitory Conv Block, Fine Tuned on 1 layer), and Fully Fine Tuned (all layers)

Results: Aeorscape Semantic Segmentation

Results - Semantic Segmentation

- a) Original Images
- b) Ground Truth
- c) Predicted

- We have proposed the Inhibitory Convolutional Block: a new approach for reducing the time to fine-tune deep learning models
 - Draws on prior work on receptive fields and inhibitory fields
 - General mechanism that can be applied to modify existing CNN architectures in order to introduce inhibitory neurons.
- Evaluation:
 - Strong results on object recognition datasets
 - State-of-the-art results for semantic segmentation of aerial images
- Key benefits:
 - Facilitates re-use of models that are implemented in Keras and Tensorflow
 - Fine-tuning for new applications is much faster than existing approaches.
 - Model re-use and fast learning both lead to lower GPU utilization, reducing energy consumption for the model training process, with consequent environmental benefits

ThankYou

Prof. Michael Madden Machine Learning & Data Mining Group National University of Ireland Galway michael.madden@nuigalway.ie <u>http://datamining.it.nuigalway.ie</u>

We acknowledge funding from **European Union's Horizon 2020** Research and Innovation Programme, under Grant Agreement No. 700264.

References

- C. Grigorescu, N. Petkov, and M. A. Westen berg, "Contour detection based on nonclassical receptive field inhibition," IEEE Transactions on Image Processing, vol. 12, no. 7, pp. 729–739, 2003
- [2] T.A. Tjøstheim and C. Balkenius, "Cumulative inhibition in neural networks," Cognitive Processing, vol. 20, no. 1, pp. 87– 102, 2019
- [3] C. Cao, Y. Huang, Z. Wang, L. Wang, N. Xu, and T. Tan, "Lateral Inhibition-Inspired Convolutional Neural Network for Visual Attention and Saliency Detection," pp. 6690–6697, 2018
- [4] B.J.T. Fernandes, G. D. C. Cavalcanti, and T. I. Ren, "Classification and segmentation of visual patterns based on receptive and inhibitory fields," in2008 Eighth International Conference on Hybrid Intelligent Systems, 2008, pp. 126–131
- [5] B.J.T. Fernandes, G. D. Cavalcanti, and T. I. Ren, "Lateral inhibition pyramidal neural network for image classification," IEEE Transaction on Cybernetics, vol. 43, no. 6, pp. 2082–2092, 2013
- [6] C. Cao, Y. Huang, Z. Wang, L. Wang, N. Xu, and T. Tan, "Lateral Inhibition-Inspired Convolutional Neural Network for Visual Attention and Saliency Detection," pp. 6690–6697, 2018
- [7] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," pp. 1–14, 2014.
- [8] K. He, X. Zhang, S. Ren, and J. Sun, "Identity mappings in deep residual networks," vol. 9908 LNCS, pp. 630–645, 2016.
- [9] I. Nigam, C. Huang, and D. Ramanan, "Ensemble Knowledge Transfer for Semantic Segmentation," in IEEE Winter Conference on Applications of Computer Vision, WACV 2018, vol. 2018-Janua, 2018, pp. 1499–1508