DUET: Detection Utilizing Enhancement for Text in Scanned or Captured Documents

Eun-Soo Jung*, HyeongGwan Son*, Kyusam Oh, Yongkeun Yun, Soonhwan Kwon, and Min Soo Kim

* Equal contributions

SAMSUNG SDS

Background and Motivation

- Most of the previous studies on text detection focus on text in the wild^[1-6]
- Text in the wild (or scene text)
 - (Relatively) More labeled data^[7-11]
- Text in documents
 - Very few labeled data^[12]
 - \rightarrow insufficient to train deep neural model
- Text detection models trained with scene text
 - : *Limited* to cover features of document images

Goal: Deep neural text detector with improved accuracies for document images

Contributions

Training data

- Data synthesizing
- Overcome the shortage of labeled document image data

Learning strategy

- Multi-task learning^[13-16]
- Weakly-supervised learning^[17-18]
- Overcome various types of noise in document images

Network Architecture

- Fully convolutional encoder-decoder structure
 - Feature Pyramid Network (FPN)^[19]
 - ResNeXt101^[20]
- Multi-task learning
 - Branch for text detection \rightarrow detection loss (L_D)
 - Branch for text enhancement
 - : pixel-level binary classification (text/non-text)
 - \rightarrow enhancement loss (L_E)
 - Multi-task loss
 - $L = \lambda_1 L_D + (1 \lambda_1) L_E$

(λ_1 : balancing parameter between L_D and L_E)

Training

- Phase 1
 - Training synthesized data
 - Fully-supervised learning
- Phase 2
 - Training synthetic data and real data
 - Detection GTs: given
 - Enhancement GTs: ??
 → weakly-supervised learning
 - Binaraized $GT_D(GT_{E'})$ → false positive loss (L_{FP})

Training

- Phase 1
 - Training synthesized data
 - Fully-supervised learning
- Phase 2
 - Training synthetic data and real data
 - Detection GTs: given
 - Enhancement GTs: ??
 → weakly-supervised learning
 - Binaraized $GT_D(GT_{E'})$ → false positive loss (L_{FP})
 - Using interim trained detector \rightarrow detection loss for enhanced output (L_{D2})
 - Multi-task loss
 - $L = \lambda_1 L_D + (1 \lambda_1) L_E$
 - $L = \lambda_{1}L_{D} + (1 \lambda_{1})(\lambda_{2}L_{D2} + (1 \lambda_{2})L_{FP})$

(λ_2 : balancing parameter between L_{D2} and L_{FP})

Experiment and Results

- Benchmark database
 - : Form Understanding in Noisy Scanned Documents (FUNSD) dataset^[12]
 - (120 train, 29 validation, 50 test)
- Comparisons with previous studies

Method	Precision	Recall	F-score
Tesseract ^[21]	45.4	68.0	54.4
Google Vision (API) ^[22]	79.8	62.0	69.8
Faster R-CNN ^[23]	70.4	84.8	76.9
EAST ^[4]	51.6	84.0	63.9
CRAFT ^[5]	91.2	84.2	87.6
CharNet ^[6]	95.1	57.4	71.6
DUET (proposed)	93.1	92.2	92.6

- IoU threshold @ 0.5
- Results from [21-23] and [4] are provided by [12]
- For [5] and [6], the trained models and test codes from the original studies were used

Output examples

- Text detector for document images
- Enhance robustness for noisy documents
 - Auxiliary task: text enhancement
- Overcome data insufficiency
 - Synthesized training data
 - Weak-supervision to train enhancement of the real training data

References

- 1. S. Long et al., "TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes," in ECCV, 2018, pp. 20–36.
- 2. J. Ma et al., "Arbitrary-oriented Scene Text Detection via Rotation Proposals," IEEE Trans. Multimed., vol. 20, no. 11, pp. 3111–3122, 2018.
- 3. D. He et al., "Multi-scale FCN with Cascaded Instance Aware Segmentation for Arbitrary Oriented Word Spotting in the Wild," in CVPR, 2017, pp. 3519–3528.
- 4. X. Zhou et al., "EAST: An Efficient and Accurate Scene Text Detector," in CVPR, 2017, pp. 5551–5560.
- 5. Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, "Character Region Awareness for Text Detection," in CVPR, 2019, pp. 5551–5560.
- 6. L. Xing, Z. Tian, W. Huang, and M. R. Scott, "Convolutional Character Networks." in ICCV, 2019, pp. 9126-9136.
- 7. D. Karatzas et al., "ICDAR 2013 Robust Reading Competition," in ICDAR, 2013, pp. 1484–1493.
- 8. D. Karatzas et al., "ICDAR 2015 Rompetition on Robust Reading," in ICDAR, 2015, pp. 1156–1160.
- 9. C. Yao, X. Bai, W. Liu, Y. Ma, and Z. Tu, "Detecting Texts of Arbitrary Orientations in Natural Images," in CVPR, 2012, pp. 1083–1090.
- 10. A. Veit, T. Matera, L. Neumann, J. Matas, and S. Belongie, "Coco-text: Dataset and Benchmark for Text Detection and Recognition in Natural Images," arXiv preprint arXiv:1601.07140, 2016.
- 11. C. K. Ch'ng, and C. S. Chan, "Total-text: A Comprehensive Dataset for Scene Ttext Detection and Recognition." in ICDAR, vol. 1, pp. 935-942, 2017.
- 12. G. Jaume, H. Kemal Ekenel, and J.-P. Thiran, "FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents," ICDARW, vol. 2, pp. 1–6, 2019.
- 13. B. Bakker, and T. Heskes, "Task Clustering and Gating for Bayesian Multitask Learning." J. Mach. Learn. Res., vol. 4, pp. 83-99, 2003.

- 14. B. Romera-Paredes, A. Argyriou, N. Berthouze, and M. Pontil, "Exploiting unrelated tasks in multi-task learning." in AISTATS, 2012, pp. 951-959.
- 15. L. Deng, G. E. Hinton, and B. Kingsbury, "New types of deep neural network learning for speech recognition and related applications: An overview." in ICASSP, 2013, pp. 8599–8603.
- 16. K. He, G. Gkioxari, P. Dollár, and R. Girshick. "Mask R-CNN." in CVPR, 2017, pp. 2961-2969.
- 17. J. Dai, K. He, and J. Sun, "Boxsup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation." in CVPR, 2015, pp. 1635-1643.
- 18. J. Lee, E. Kim, S. Lee, J. Lee, and S. Yoon, "Ficklenet: Weakly and Semi-supervised Semantic Image Segmentation using Stochastic Inference." in CVPR, 2019, pp. 5267-5276.
- 19. T. Y. Lin et al., "Feature Pyramid Networks for Object Detection," in CVPR, 2017, pp. 2117–2125.
- 20. S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, "Aggregated Residual Transformations for Deep Neural Networks," in CVPR, 2017, pp. 1492–1500.
- 21. R. Smith, "An Overview of The Tesseract OCR Engine," ICDAR 2007 0
- 22. https://cloud.google.com/vision/docs/pdf
- 23. S. Ren, et al., "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," NIPS 2015.