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Background and Motivation

= Most of the previous studies on text detection focus on text in the wild!1-©]

" Text in the wild (or scene text)
= (Relatively) More labeled datal’-11]

® Text in documents

= \/ery few labeled datal!?]
- insufficient to train deep neural model

" Text detection models trained with scene text
. Limited to cover features of document images

Goal: Deep neural text detector with improved
accuracies for document images
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Contributions

Training data Learning strategy
" Data synthesizing = Multi-task learning(t3-1¢l

= Overcome the shortage of labeled = Weakly-supervised learningl17-18]

document image data = Overcome various types of noise in

document images
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Network Architecture

® Fully convolutional encoder-decoder structure or
= Feature Pyramid Network (FPN)[2] %
= ResNeXt101[20]

= Multi-task learning

= Branch for text detection
—> detection loss (Lp)

= Branch for text enhancement
. pixel-level binary classification (text/non-text)
—> enhancement loss (L)

= Multi-task loss
9L — AlLD + (1 — AI)LE RS

SNk sk
XN NADEEN s

(A1: balancing parameter between Ly and Lg)
GT: ground truth
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= Phase 1

= Training synthesized data
= Fully-supervised learning

= Phase 2

= Training synthetic data
and real data
= Detection GTs: given

= Enhancement GTs: ??
- weakly-supervised learning

» Binaraized GT,(GTg)
—> false positive loss (Lgp)

Training

5/9



= Phase 1

= Phase 2

Training synthesized data
Fully-supervised learning

Training synthetic data
and real data

Detection GTs: given

Enhancement GTs: 77
- weakly-supervised learning

» Binaraized GT,(GTg)
—> false positive loss (Lgp)

= Using interim trained detector
—> detection loss for enhanced output (Lp-)

Multi-task loss

Training

9 L - AlLD + (1 - Al)LE
L= 2Lp+ (1 —21)AyLpy + (1 —A3)Lgp)

(A,: balancing parameter betweenL, andLpp)
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= Benchmark database

Experiment and Results

: Form Understanding in Noisy Scanned Documents (FUNSD) dataset!12!
(120 train, 29 validation, 50 test)

= Comparisons with previous studies

Method Precision Recall F-score
Tesseract(?1] 45.4 68.0 54.4
Google Vision (API)[22] 79.8 62.0 69.8
Faster R-CNNI23] 70.4 84.8 76.9
EASTM 51.6 84.0 63.9
CRAFTE] 91.2 84.2 87.6
CharNet!8l 95.1 57.4 71.6
DUET (proposed) 93.1 92.2 92.6

loU threshold @ 0.5

Results from [21-23] and [4] are provided by [12]

For [5] and [6], the trained models and test codes from the original studies

were used

= Qutput examples
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Conclusion

" Text detector for document images

" Enhance robustness for noisy documents
= Auxiliary task: text enhancement

" Overcome data insufficiency
= Synthesized training data
= \Weak-supervision to train enhancement of the real training data
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