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Background and Motivation

Most of the previous studies on text detection focus on text in the wild[1-6]

 Text in the wild (or scene text) 
 (Relatively) More labeled data[7-11]

 Text in documents
 Very few labeled data[12]

 insufficient to train deep neural model

 Text detection models trained with scene text
: Limited to cover features of document images

Goal: Deep neural text detector with improved 
accuracies for document images
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Training data

 Data synthesizing

Overcome the shortage of labeled 
document image data

Contributions

Learning strategy

Multi-task learning[13-16]

Weakly-supervised learning[17-18]

Overcome various types of noise in 
document images

SYNTHESIZED

REAL
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Network Architecture

 Fully convolutional encoder-decoder structure
 Feature Pyramid Network (FPN)[19]

 ResNeXt101[20]

Multi-task learning
 Branch for text detection
 detection loss (𝐿𝐷)

 Branch for text enhancement
: pixel-level binary classification (text/non-text)
 enhancement loss (𝐿𝐸)

 Multi-task loss
𝐿 = 𝜆1𝐿𝐷 + (1 − 𝜆1)𝐿𝐸

LD LE

GTD GTE

GT: ground truth
(𝜆1: balancing parameter between 𝐿𝐷 and 𝐿𝐸)
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Training

 Phase 1
 Training synthesized data

 Fully-supervised learning

 Phase 2
 Training synthetic data 

and real data

 Detection GTs: given

 Enhancement GTs: ??
 weakly-supervised learning

 Binaraized GTD (GTE’)
 false positive loss (𝐿𝐹𝑃)

LD

GTD

LFP

GTE’
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Training

 Phase 1
 Training synthesized data

 Fully-supervised learning

 Phase 2
 Training synthetic data 

and real data

 Detection GTs: given

 Enhancement GTs: ??
 weakly-supervised learning

 Binaraized GTD (GTE’)
 false positive loss (𝐿𝐹𝑃) 

 Using interim trained detector
 detection loss for enhanced output (𝐿𝐷2)

 Multi-task loss
 𝐿 = 𝜆1𝐿𝐷 + (1 − 𝜆1)𝐿𝐸

LD

GTD

LFP

GTE’

LD2

GTD

Copied every epoch

𝐿 = 𝜆1𝐿𝐷 + (1 − 𝜆1)(𝜆2𝐿𝐷2 + (1 − 𝜆2)𝐿𝐹𝑃)

(𝜆2: balancing parameter between𝐿𝐷2 and𝐿𝐹𝑃)
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Experiment and Results

 Benchmark database
: Form Understanding in Noisy Scanned Documents (FUNSD) dataset[12]

(120 train, 29 validation, 50 test)

 Comparisons with previous studies

Method Precision Recall F-score

Tesseract[21] 45.4 68.0 54.4

Google Vision (API)[22] 79.8 62.0 69.8

Faster R-CNN[23] 70.4 84.8 76.9

EAST[4] 51.6 84.0 63.9

CRAFT[5] 91.2 84.2 87.6

CharNet[6] 95.1 57.4 71.6

DUET (proposed) 93.1 92.2 92.6

• IoU threshold @ 0.5
• Results from [21-23] and [4] are provided by [12]
• For [5] and [6], the trained models and test codes from the original studies 

were used

 Output examples

Detection

Enhancement
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Conclusion

 Text detector for document images

 Enhance robustness for noisy documents
 Auxiliary task: text enhancement

Overcome data insufficiency
 Synthesized training data

 Weak-supervision to train enhancement of the real training data
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