

On the use of Benford's law to detect GAN-generated images

Nicolò Bonettini, Paolo Bestagini, Stefano Tubaro – Politecnico di Milano Simone Milani – Università degli Studi di Padova

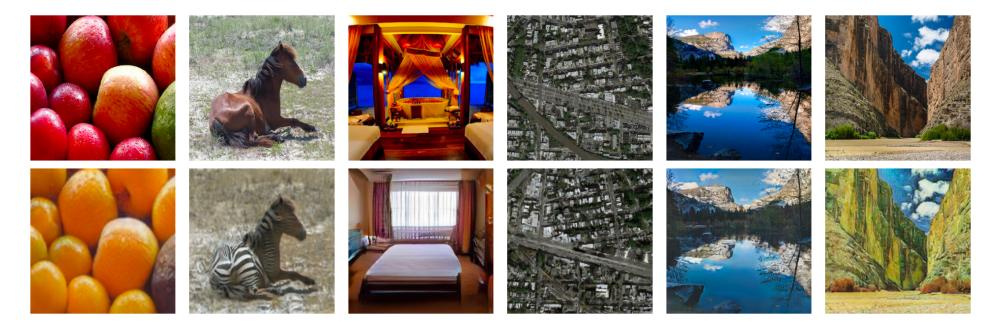
MILANO 1863

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Detection of GAN-generated images

Problem

• Images generated by GANs can be very realistic



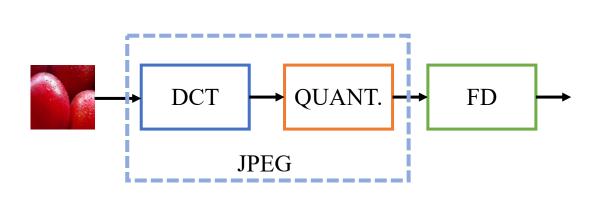
Goal

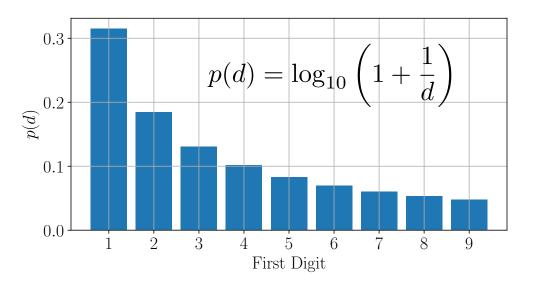
• To detect whether a picture is a natural one or it has been generated by a neural network

On the use of Benford's law to detect GAN-generated images

Main idea

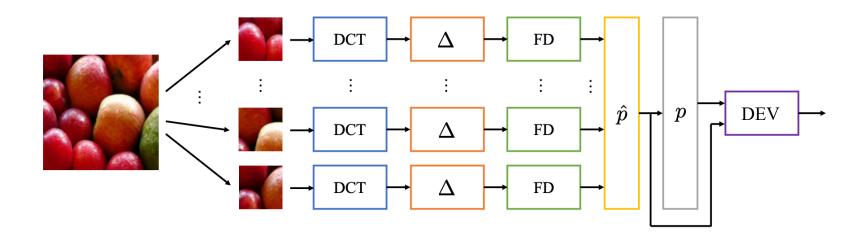
- GAN images may have different statistics from natural images
- Benford's Law can capture these traces
- Given a natural image (JPEG compressed), compute the first digit (FD) of quantized DCT coefficients. It is known that distribution of the FDs follows Benford's law.





Proposed solution

- 1. Given a query image, compute FD of quantized DCT coefficients.
- 2. Compute probability distribution through histogram computation \hat{p}
- 3. Fit theoretical Benford's curve p
- 4. Use deviation between p and \hat{p} as an element of the feature vector

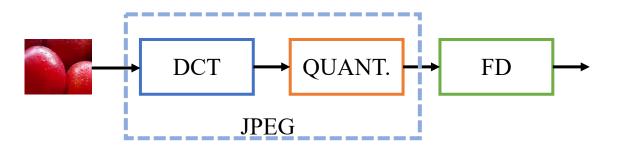


Train a simple classifier (Random Forest) to discriminate between real and generated images

ICPR 2020

Building the feature vector

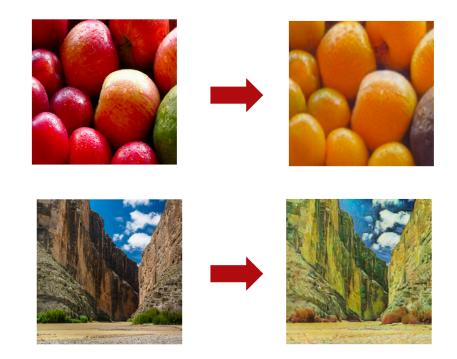
- Different feature vectors generated by combining:
 - 9 possible DCT frequencies
 - 5 possible JPEG quality factors (QF)
 - 4 possible bases for computing the first digits
- We end up with 675 possible feature vectors (setups)
- Depending on the number of DCT coefficients, JPEG QF and bases, feature vector length can vary from 3 to 540 elements



Dataset

• Publicly available images from [1]

Architecture	Dataset	Number of images	
	orange2apple	1280	
	photo2ukiyoe	4072	
	winter2summer	1484	
	zebra2horse	1670	
Cycle-Gan	photo2cezanne	3978	
	photo2vangogh	4099	
	photo2monet	4765	
	facades	259	
	cityscapes	1996	
	sats	684	
	lsun_bedroom	30770	
ProGAN	lsun_bridge	28768	
	lsun_churchoutdoor	29120	
	lsun_kitchen	42706	
	lsun_tower	29020	



[1] F.Marra, D.Gragnaniello, L.Verdoliva, G.Poggi, "Do GANs Leave Artificial Fingerprints?" *IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR)*, 2019

On the use of Benford's law to detect GAN-generated images

Results on uncompressed images

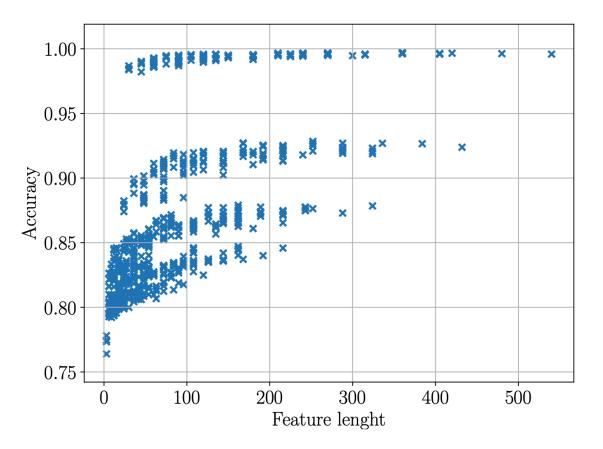
- Train a Random Forest classifier for each different setup, with Leave One Group Out policy
- Comparison with [2] and with a baseline Xception network trained for the purpose

Dataset	Proposed	Xception	Steganalysis SVM	Steganalysis RF
orange2apple	98.13	97.64	88.80	76.49
photo2ukiyoe	100.00	97.41	86.78	87.90
winter2summer	100.00	68.33	77.96	68.89
zebra2horse	99.69	89.58	91.01	77.00
photo2cezanne	99.97	95.91	95.88	93.17
photo2vangogh	100.00	93.75	94.68	92.93
photo2monet	99.84	94.08	94.80	89.87
facades	100.00	99.84	73.93	76.06
cityscapes	100.00	100.00	100.00	100.00
sats	99.69	73.00	90.92	96.93
lsun_bedroom	100.00	76.22	98.92	99.25
lsun_bridge	99.89	82.49	95.90	95.16
lsun_churchoutdoor	99.99	99.79	98.81	99.12
lsun_kitchen	99.99	87.26	99.49	99.59
lsun_tower	99.98	95.45	98.87	99.19
avg	99.83	89.64	91.03	90.11

[2] F. Marra, D. Gragnaniello, D. Cozzolino, and L. Verdoliva, "Detection of GAN-Generated Fake Images over Social Networks," *IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR)*, 2018.

Results on uncompressed images (2)

• The length of the feature vector can be tailored to specific needs of accuracy or time constraints



Results on compressed images

- To investigate a more realistic scenario, we compressed the images with different JPEG QF and retrained
- Comparison with a baseline Xception network trained for the purpose

QF	Dataset	Proposed	Xception
	orange2apple	94.50	92.56
100	photo2ukiyoe	100.00	98.50
100	cityscapes	100.00	100.00
	lsun_tower	100.00	94.64
	orange2apple	82.01	90.66
95	photo2ukiyoe	97.00	98.42
90	cityscapes	99.99	99.32
	lsun_tower	99.80	99.48
	orange2apple	65.93	85.61
00	photo2ukiyoe	92.01	98.17
90	cityscapes	100.00	99.66
	lsun_tower	99.60	98.86

Preliminary results on faces

- Dataset composed only by human faces:
 - All faces from [1] (ProGAN, StarGAN, GlowGAN)
 - Additional faces generated by recent StyleGan2

Dataset		Proposed
	progan_celeba	79.75
	stargan_black_hair	97.26
	stargan_blond_hair	96.56
	stargan_brown_hair	96.76
	stargan_male	96.24
	stargan_smiling	96.06
	glow_black_hair	86.56
	glow_blond_hair	88.26
	glow_brown_hair	86.18
	glow_male	87.11
	glow_smiling	83.04
	stylegan2-0.5	77.18
	stylegan2-1	72.63
avg		87.96

[1] F.Marra, D.Gragnaniello, L.Verdoliva, G.Poggi, "Do GANs Leave Artificial Fingerprints?" *IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR)*, 2019

Conclusions

- We propose a handcrafted feature extraction pipeline to perform GAN-generated image detection
- Our method requires low computational power, and the feature vector length can be tailored to the desired accuracy and amount of time
- Our method can be trained when a limited set of data is available, e.g., only a few images from a brand-new GAN
- We achieve the best accuracies on uncompressed images, and we are still competitive when dealing with further JPEG compression
- Preliminary results on faces are promising, we need to improve on newer GAN architectures

GAN-generated images are realistic, but they still have statistical inconsistencies

25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION Milan, Italy 10 | 15 January 2021

"putting Artificial Intelligence to work on patterns"

Università degli Studi di Padova

COVID-19

hink positive

Technically Co-Sponsored by