

Silesian University of Technology

Memetic evolution of training sets with adaptive radial basis kernels for support vector machines

Jakub Nalepa, Wojciech Dudzik and Michal Kawulok

{jakub.nalepa, wojciech.dudzik, michal.kawulok}@polsl.pl

Presentation outline

- Proposed method
- 3 Experiments
- 4 Conclusions and Outlook

What is the problem

What are the problems

Main problems

- High computational complexity of training ${\cal O}(t^3)$
- High memory complexity of training ${\cal O}(t^2)$
- Need to fine-tune the models with hyperparameters
- Growing number of features
- Bigger datasets
- Classification time linearly depends on number of SV (O(S))

Problem statement

Proposed method Experiments Conclusions and Outlook

What is the problem

Solution

Memetic evolution of training sets with adaptive RBF kernels for SVM

Proposed method

伺 ト イヨト イヨト

Adaptive RBF kernel

Figure: Assigning different γ 's in the RBF kernel to different T vectors can help better "model" the SVM hyperplane

Adaptive RBF kernel

Memetic algorithms

Algorithm 1 Memetic evolution of SVM training sets.

1: Select $\vec{\gamma}$ 2: for all γ_i in $\vec{\gamma}$ do $\triangleright \gamma$'s are sorted (ascendingly) $P, P'_{\text{best}} \leftarrow \text{Generate population}(N, C, \gamma_i, T)$ 3. if $\eta(P'_{\text{best}}) > \eta(P_{\text{best}})$ then 4: $P'_{\text{best}} \leftarrow \text{RunEvolution}()$ 5: if $\eta(P'_{\text{best}}) > \eta(P_{\text{best}})$ then 6: Add $SV(P'_{best})$ to \mathcal{S}_{best} 7: 8: $T \leftarrow \mathsf{Shrink}(T, P)$ $P_{\text{best}} \leftarrow P'_{\text{best}}$ 9: end if 10: end if 11: 12: end for 13: return P_{best} 伺下 イヨト イヨト

Memetic algorithms

Figure: The best solution from initial population.

Memetic algorithms

Figure: The best solution after finishing evolution with first γ from $\vec{\gamma}$.

Memetic algorithms

Figure: Shrinked training set that will be used in next iteration with subsequent γ . Shrinking procedure is based on whole population.

Memetic algorithms

Figure: Solution after second evolution has ended. Added new support vectors marked with red color crosses.

Memetic algorithms

Figure: Adding next γ value marked with green vectors provided worse classification performance, these support vectors will be removed.

Memetic algorithms

Figure: Final solution for given dataset containing three different γ values.

Setup Results

Experiments

ICPR 2020 Memetic evolution of training sets with adaptive RBF kernels for SVM

14 / 20

・ 同 ト ・ ヨ ト ・ ヨ ト

Setup Results

Implementation details

Setup:

 Windows 10 machine equipped with i9-7900X CPU and 64 GB of RAM

Settings:

- Objective function AUC with thresholding for optimal accuracy over validation set
- 5-fold cross-validation
- All results shows average from 50 runs (10 times for each fold),
- Folds contains training, validation and test set in 3:1:1 proportion, respectively

Setup Results

Table: The results of all methods. The best results are boldfaced.

Algorithm	AUC	Acc	F1	Pr	Re	MCC
GNB	0.839	0.736	0.471	0.454	0.708	0.397
LR	0.862	0.912	0.599	0.691	0.567	0.545
<i>k</i> -NN(3)	0.857	0.930	0.674	0.729	0.644	0.626
k-NN(5)	0.872	0.930	0.632	0.716	0.591	0.590
k-NN(7)	0.879	0.928	0.591	0.695	0.548	0.554
SVM(Linear)	0.848	0.912	0.584	0.648	0.560	0.528
SVM(Poly)	0.869	0.924	0.632	0.717	0.605	0.592
SVM(RBF)	0.807	0.877	0.201	0.303	0.198	0.162
MASVM	0.880	0.936	0.651	0.763	0.605	0.622
MASVM(MG)	0.877	0.936	0.676	0.793	0.617	0.644
Ours	0.888	0.941	0.696	0.810	0.640	0.667

<ロト < 同ト < ヨト < ヨト

Setup Results

Table: The ranking test over MCC (together with the statistical importance of the differences between our MA and the corresponding approach), for various IR ranges. The meanings of ns, *, **, ***, and ****: p > 0.05, $p \le 0.05$, $p \le 0.01$, $p \le 0.001$, and $p \le 0.0001$. The best results are boldfaced.

Algorithm	Q1	Q2	Q3	Q4	All
GNB	7.63**	9.04***	8.58****	6.50****	7.94****
LR	6.08^{ns}	5.79 ^{ns}	$5.75^{ m ns}$	5.29 ^{ns}	5.73****
k-NN(3)	5.33^{ns}	4.88 ^{ns}	4.67 ^{ns}	5.50^{ns}	5.09*
k-NN(5)	5.50^{ns}	5.21^{ns}	$5.67^{ m ns}$	$5.67^{ m ns}$	5.51***
k-NN(7)	5.21^{ns}	$5.63^{ m ns}$	6.58**	6.25**	5.92****
SVM(Linear)	6.67^{ns}	5.63^{ns}	6.42**	5.71**	6.10****
SVM(Poly)	5.92^{ns}	4.88 ^{ns}	5.38^{ns}	4.75^{ns}	5.23**
SVM(RBF)	7.92**	10.71****	9.83****	8.13****	9.15****
MASVM	$5.17^{ m ns}$	4.92^{ns}	4.79 ^{ns}	5.04^{ns}	4.98 ^{ns}
MASVM(MG)	4.75^{ns}	4.46^{ns}	3.83^{ns}	4.00^{ns}	4.26^{ns}
Ours	3.75	4.42	2.92	3.21	3.57

Conclusions

Conclusions and outlook

/⊒ ▶ ◀ ⋽ ▶ ◀

Conclusions

Conclusions

- Our technique outperforms SVMs optimized using other evolutionary methods and other supervised learners with grid-searched hyperparameters.
- It delivers consistent results across sets of various characteristics.
- Our technique can be easily applied in imbalanced classification, where it outperformed all other methods.
- Assigning different γ's to different training vectors is useful in heterogeneous ("difficult") parts of the input space, as visually shown for our synthetic datasets.

Thank you

{jakub.nalepa, wojciech.dudzik, michal.kawulok}@polsl.pl

ICPR 2020, Milan January 10-15, 2021