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Problem statement

What is the problem

What are the problems

Main problems
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Proposed method
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Proposed method

Adaptive RBF kernel

Figure: Assigning
different +'s in the
RBF kernel to

different T' vectors
can help better
“model” the SVM
hyperplane
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Proposed method

Adaptive RBF kernel

Figu
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Kernel function
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Proposed method

Memetic algorithms

Algorithm 1 Memetic evolution of SVM training sets.
1: Select 4
2: for all ; in 4 do » ~'s are sorted (ascendingly)
3: P, Pl ., < Generate population(N, C, v;, T)

est
4 if n(P.) > n(Poest) then

5: P! . < RunEvolution()

6: if n(P.) > n(Poest) then
7 Add SV(P] ;) to Shest

8 T <« Shrink(T', P)

9: Poest < Pl/)est

10: end if

11: end if
12: end for

13: return P
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Proposed method

Memetic algorithms
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Proposed method

Memetic algorithms
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Proposed method

Memetic algorithms

Figure: Shrinked @ 0
training set that will

be used in next

iteration with

subsequent 7.

Shrinking procedure ‘
is based on whole

population.
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Proposed method

Memetic algorithms
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Proposed method

Memetic algorithms

Figure: Adding next ~
value marked with .

green vectors :
provided worse

classification .
performance, these .
support vectors will

be removed. .
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Proposed method

Memetic algorithms
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Setup
Experiments Results

Implementation details

Setup:

@ Windows 10 machine equipped with i9-7900X CPU and 64
GB of RAM

Settings:

@ Objective function AUC with thresholding for optimal
accuracy over validation set

@ b-fold cross-validation

@ All results shows average from 50 runs (10 times for each
fold),

@ Folds contains training, validation and test set in 3:1:1
proportion, respectively
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Setup

Experiments Results

Table: The results of all methods. The best results are boldfaced.

Algorithm AUC Acc F1 Pr Re MCC
GNB 0.839 0.736 0.471 0.454 0.708 0.397

LR 0.862 0.912 0.599 0.691 0.567 0.545

k-NN(3) 0.857 0.930 0.674 0.729 0.644 0.626
k-NN(5) 0.872 0.930 0.632 0.716 0.591 0.590
k-NN(7) 0.879 0.928 0.591 0.695 0.548 0.554
SVM(Linear) 0.848 0.912 0.584 0.648 0.560 0.528
SVM(Poly) 0.869 0.924 0.632 0.717 0.605 0.592
SVM(RBF) 0.807 0.877 0.201 0.303 0.198 0.162
MASVM 0.880 0.936 0.651 0.763 0.605 0.622
MASVM(MG) 0.877 0.936 0.676 0.793 0.617 0.644
Ours 0.888 0.941 0.696 0.810 0.640 0.667
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Setup

Experiments Results

Table: The ranking test over MCC (together with the statistical
importance of the differences between our MA and the corresponding
approach), for various IR ranges. The meanings of ns, *, ** *** and
k% p > 0.05, p <0.05, p<0.01, p<0.001, and p < 0.0001. The
best results are boldfaced.

Algorithm Q1 Q2 Q3 Q4 All
GNB  7.63**  9.04*** 8.58**** . 50****F  T7.94%**x*
LR 6.08" 5.79s 5.75" 5.291s 5.73%***
k-NN(3) 5.33™%  4.88"s 4.67"s 5.50"s 5.09*
k-NN(5) 5.50"% 5.210 5.67" 5.67"8 5.51%**
k-NN(7) 5.21™  5.63"s 6.58** 6.25%* 5.92%***
SVM(Linear) 6.67™% 5.63"s 6.42** 5.71** 6.10%***
SVM(Poly) 5.92"s  4.88" 5.38"s 475" 5.23**
SVM(RBF)  7.92**  10.71****  9.83****  g.13**** 9 ]15%***
MASVM  5.17%8  4,92"s 4.79"s 5.04"s 4.98"s
MASVM(MG)  4.75™%  4.46"s 3.83"s 4.00"s 4.26"
Ours 3.75 4.42 2.92 3.21 3.57
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Conclusions

Conclusions and Outlook

Conclusions and outlook
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Conclusions

Conclusions and Outlook

Conclusions

@ Our technique outperforms SVMs optimized using other
evolutionary methods and other supervised learners with
grid-searched hyperparameters.

o It delivers consistent results across sets of various
characteristics.

@ Our technique can be easily applied in imbalanced
classification, where it outperformed all other methods.

@ Assigning different «'s to different training vectors is useful in
heterogeneous (“difficult”) parts of the input space, as
visually shown for our synthetic datasets.
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