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Main problems

High computational complexity of training O(t3)

High memory complexity of training O(t2)

Need to fine-tune the models with hyperparameters

Growing number of features

Bigger datasets

Classification time linearly depends on number of SV
(O(S))
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Proposed solution

Optimize training set along model optimization by
incorporating novel adaptive radial basis function kernel.
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Figure: Assigning
different γ’s in the
RBF kernel to
different T vectors
can help better
“model” the SVM
hyperplane
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Kernel function

For training: K(xi, xj) = e−γi||xi−xj ||
2
,

For inference: K(svi, x) = e−γi||svi−x||
2
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Algorithm 1 Memetic evolution of SVM training sets.
1: Select ~γ
2: for all γi in ~γ do I γ’s are sorted (ascendingly)
3: P, P ′best ← Generate population(N , C, γi, T )
4: if η(P ′best) > η(Pbest) then
5: P ′best ← RunEvolution()
6: if η(P ′best) > η(Pbest) then
7: Add SV(P ′best) to Sbest
8: T ← Shrink(T , P )
9: Pbest ← P ′best
10: end if
11: end if
12: end for
13: return Pbest
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Figure: The best
solution from initial
population.
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Figure: The best
solution after
finishing evolution
with first γ from ~γ.
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Figure: Shrinked
training set that will
be used in next
iteration with
subsequent γ.
Shrinking procedure
is based on whole
population.
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Figure: Solution after
second evolution has
ended. Added new
support vectors
marked with red color
crosses.
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Figure: Adding next γ
value marked with
green vectors
provided worse
classification
performance, these
support vectors will
be removed.
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Figure: Final solution
for given dataset
containing three
different γ values.
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Implementation details

Setup:

Windows 10 machine equipped with i9-7900X CPU and 64
GB of RAM

Settings:

Objective function AUC with thresholding for optimal
accuracy over validation set

5-fold cross-validation

All results shows average from 50 runs (10 times for each
fold),

Folds contains training, validation and test set in 3:1:1
proportion, respectively
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Table: The results of all methods. The best results are boldfaced.

Algorithm AUC Acc F1 Pr Re MCC
GNB 0.839 0.736 0.471 0.454 0.708 0.397
LR 0.862 0.912 0.599 0.691 0.567 0.545

k-NN(3) 0.857 0.930 0.674 0.729 0.644 0.626
k-NN(5) 0.872 0.930 0.632 0.716 0.591 0.590
k-NN(7) 0.879 0.928 0.591 0.695 0.548 0.554

SVM(Linear) 0.848 0.912 0.584 0.648 0.560 0.528
SVM(Poly) 0.869 0.924 0.632 0.717 0.605 0.592
SVM(RBF) 0.807 0.877 0.201 0.303 0.198 0.162
MASVM 0.880 0.936 0.651 0.763 0.605 0.622

MASVM(MG) 0.877 0.936 0.676 0.793 0.617 0.644
Ours 0.888 0.941 0.696 0.810 0.640 0.667
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Table: The ranking test over MCC (together with the statistical
importance of the differences between our MA and the corresponding
approach), for various IR ranges. The meanings of ns, *, **, ***, and
****: p > 0.05, p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001. The
best results are boldfaced.

Algorithm Q1 Q2 Q3 Q4 All
GNB 7.63∗∗ 9.04∗∗∗ 8.58∗∗∗∗ 6.50∗∗∗∗ 7.94∗∗∗∗

LR 6.08ns 5.79ns 5.75ns 5.29ns 5.73∗∗∗∗

k-NN(3) 5.33ns 4.88ns 4.67ns 5.50ns 5.09∗

k-NN(5) 5.50ns 5.21ns 5.67ns 5.67ns 5.51∗∗∗

k-NN(7) 5.21ns 5.63ns 6.58∗∗ 6.25∗∗ 5.92∗∗∗∗

SVM(Linear) 6.67ns 5.63ns 6.42∗∗ 5.71∗∗ 6.10∗∗∗∗

SVM(Poly) 5.92ns 4.88ns 5.38ns 4.75ns 5.23∗∗

SVM(RBF) 7.92∗∗ 10.71∗∗∗∗ 9.83∗∗∗∗ 8.13∗∗∗∗ 9.15∗∗∗∗

MASVM 5.17ns 4.92ns 4.79ns 5.04ns 4.98ns

MASVM(MG) 4.75ns 4.46ns 3.83ns 4.00ns 4.26ns

Ours 3.75 4.42 2.92 3.21 3.57
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Conclusions

Our technique outperforms SVMs optimized using other
evolutionary methods and other supervised learners with
grid-searched hyperparameters.

It delivers consistent results across sets of various
characteristics.

Our technique can be easily applied in imbalanced
classification, where it outperformed all other methods.

Assigning different γ’s to different training vectors is useful in
heterogeneous (“difficult”) parts of the input space, as
visually shown for our synthetic datasets.
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