Position-Aware Safe Boundary Interpolation Oversampling

Yongxu Liu, Yan Liu Department of Computing The Hong Kong Polytechnic University, Hong Kong SAR, China

Background

Literature

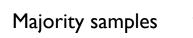
- Proposed Method
- > Future Work

Literature

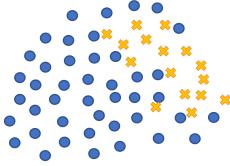
- Proposed Method
- **Future Work**

Imbalance Data Classification

- Classification is a supervised learning task.
 - Learn from training data, then **predict** categorical classes on test data.
- The imbalanced data sets
 - The number of data in some classes are **extremely smaller** than other classes.
 - Widely existing in many applications, such as:
 - fraud detection, disease diagnosis, oil spill detection from satellite images, etc.
- Imbalanced data significantly compromise the performance of most standard learning algorithms.



Minority samples



Effects of Imbalance on SVM

- SVM works well on balanced datasets. But it towards the majority class and has low performance on the minority on imbalanced datasets.
- SVM has two objectives:
 - separating the two classes with the maximum margin
 - minimizing the number of misclassifications
- Effects: Margin is maximized with low total misclassification error

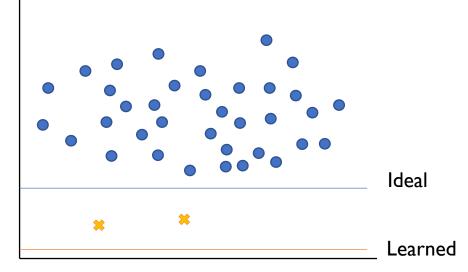


Fig. Effects of Imbalance on SVM

> Background

Literature

Proposed Method

Future Work

Literature

- The existing solutions of class imbalance classification can be roughly divided into two types:
 - Algorithm-level methods: <u>Modify learners</u>, such as adding misclassification cost or modified loss function
 - Adaboost¹, inducing the misclassification cost of the minority class to build an ensemble of weak learners
 - Data-level methods: Modify data distribution, create balanced dataset
 - Bootstrap², sampling dataset with replacement in each iteration
 - Advantages:
 - more **universal** as they do not rely on any specific learner
 - more **flexible** combined with other techniques in machine learning.

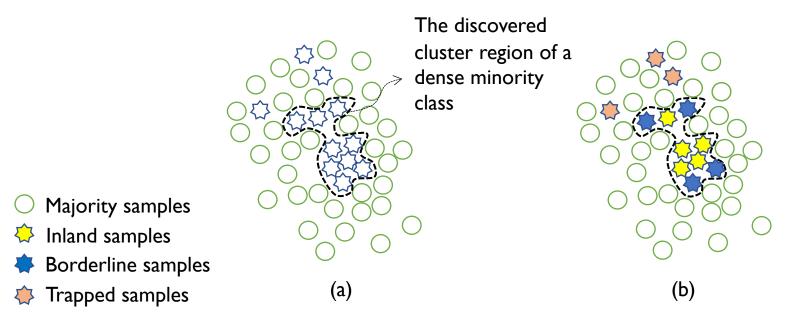
P. Thanathamathee and C. Lursinsap, "Handling imbalanced data sets with synthetic boundary data generation using bootstrap re-sampling and adaboost techniques," PRL, 2013. 7
J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.

Literature: Data-level

- Under-sampling: sample part of majority data
 - **Issues**: probably will <u>lose useful information</u> by discarding the majority instances.
- **Over-sampling**: generate more minority data
 - **Issues**: more frequently used in data-level methods, as do not discard examples and would not lose useful information for classifier.
- **Cluster-based sampling**: integrate **clustering** algorithms with **over-sampling**.
 - Not only classify between classes, also handle samples within classes.
 - E.g. Cluster-SMOTE¹ (K-means), DBSMOTE² (DBSCAN)
 - **Issues**: introducing <u>additional noise</u> because of improper and non-robust clustering methods.

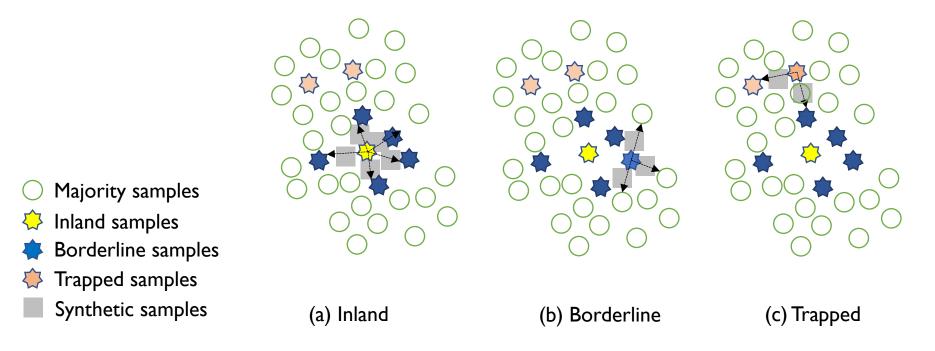
Preliminary

- Recently, a position characteristic-aware interpolation over-sampling algorithm (PAIO) has been proposed to re-balance data sets.
- There are two main phases of this work:
 - I. Cluster the minority examples and identify them into inland, borderline, trapped points.



Preliminary

- Recently, a position characteristic-aware interpolation over-sampling algorithm (PAIO) has been proposed to re-balance data sets.
- There are two main phases of this work:
 - 2. Generate synthetic examples accordingly.



Reference: T. Zhu, Y. Lin, and Y. Liu, "Improving interpolation-based oversampling for imbalanced data learning," Knowledge-Based Systems, 2020.

Background

Literature

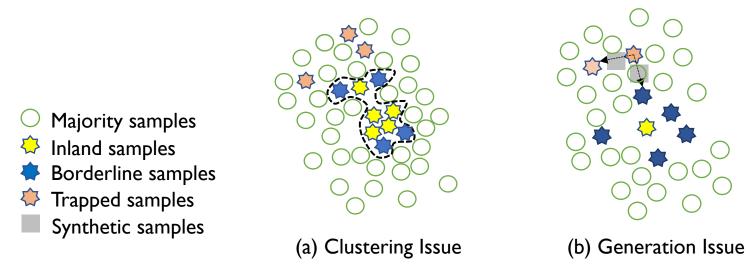
Proposed Method

- Motivation
- Formulation
- Experiment

Future Work

Motivation

- Issues of PAIO
 - Clustering Issue: PAIO tends to group two dense minority samples into one cluster.
 - Leads the synthetic samples locate in majority sample.
 - Generation Issue: PAIO tries to generate synthetic points for trapped samples according to k-nearest neighbors
 - Easily causes the points close to majority samples.



Reference: T. Zhu, Y. Lin, and Y. Liu, "Improving interpolation-based oversampling for imbalanced data learning," Knowledge-Based Systems, 2020.

> Background

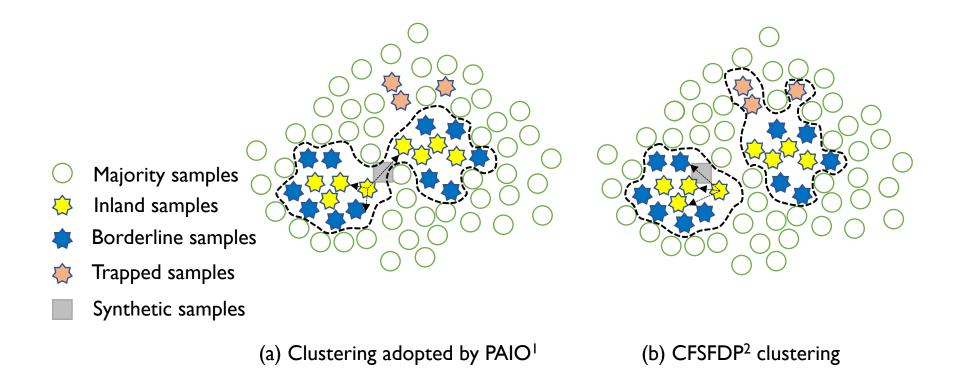
Literature

Proposed Method

- Motivation
- Formulation
- Experiment
- Future Work

Clustering

• We employ one advanced clustering algorithm, CFSFDP, which is able to handle such scenario.

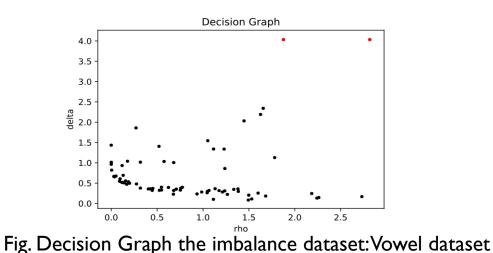


1. T. Zhu, Y. Lin, and Y. Liu, "Improving interpolation-based oversampling for imbalanced data learning," Knowledge-Based Systems, 2020.

2. A. Rodriguez and A. Laio, "Clustering by fast search and find of density peaks," Science, 2014.

Clustering

- Given a distance matrix $D = [d_{ij}]_{n*n}$, where d_{ij} denotes the distance between the minority samples x_i and x_j .
- For each minority sample x_i compute:
 - $\rho_i = \sum_{j:j\neq i} e^{-(\frac{d_{ij}}{d_c})^2}$ (local density of minority points within a distance d_c)
 - $\delta_i = \min_{j:\rho_j > \rho_i}(d_{ij})$ (distance to the closest minority point with higher density)
- CFSFDP assumes that cluster centers are defined by **a high local density** ρ within **a relatively distance** between centers.



Division

- Given a set of minority examples $X = \{x_1, \dots, x_n\}$ and a set of clusters from the clustering $L = \{L_1, \dots, L_{n_L}\}$, where $L_c \subset X$, $L_i \cap L_j = \emptyset$ for any $i \neq j$.
- For each minority example x_i compute its local density within its m-nearest neighbors $N_m(x_i)$:
 - $\kappa(x_i) = |N_m^*(x_i)|/m$,
 - where $N_m^*(x_i) = \{x_j | x_j \in N_m(x_i) \cap L_c, x_i \in L_c, i \neq j\}$

Division

- After clustering the minority examples, classify them into inland, borderline, trapped examples.
 - Inland: $\kappa(x_i) > \rho T H$
 - Borderline: $\kappa(x_i) \le \rho T H$ and an inland sample exist in its $N_m(x_i)$
 - Trapped: $\kappa(x_i) \le \rho TH$ and not a single inland sample exist in its $N_m(x_i)$

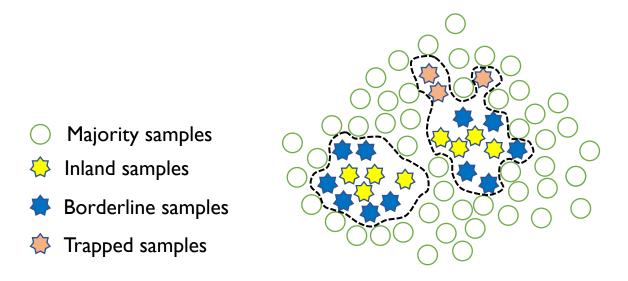
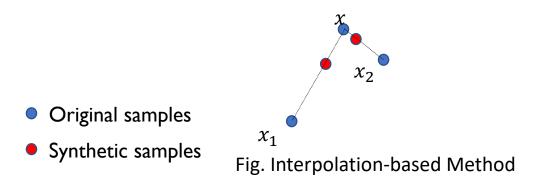


Fig. Our proposed classifying minority examples based on clustering

Generation

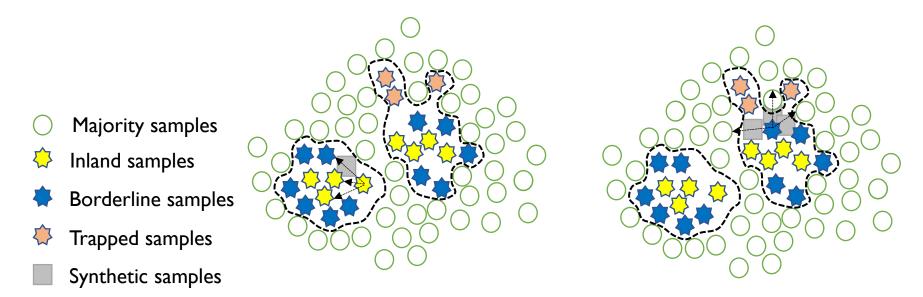
- After grouping the minority examples, generate synthetic points for inland, borderline and trapped samples, respectively.
 - We follow the interpolation-based method for **inland** and **borderline**, the same with PAIO.
 - Given a point x_i and its candidate point x_j , the synthetic point s is calculated as: $s = x_i + \gamma(x_j - x_i)$, where γ is a constant vector.
 - We propose a new method for **tapped points** to reduce noise.



Reference: T. Zhu, Y. Lin, and Y. Liu, "Improving interpolation-based oversampling for imbalanced data learning," Knowledge-Based Systems, 2020.

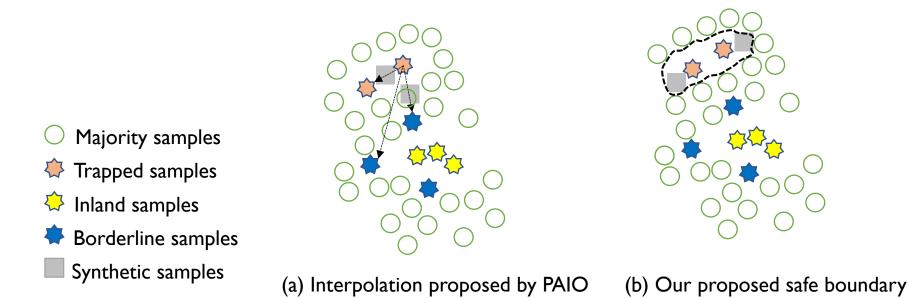
Generation for inland and borderline

- For inland minority example x_i , its candidate point x_j chosen from the same cluster $L_c \setminus x_i$, where $x_i \in L_c$.
- For borderline minority example x_i , its candidate point x_j chosen from k_{maj} nearest majority neighbors $N_{maj}(x_i)$.



Generation for trapped

- We propose to learn the **safe boundary** of **trapped** samples to generate synthetic points with following hypothesis:
 - The embedding vectors of synthetic instances should be more similar to its corresponding trapped instance, than to any other majority instance.



Reference: T. Zhu, Y. Lin, and Y. Liu, "Improving interpolation-based oversampling for imbalanced data learning," Knowledge-Based Systems, 2020.

Generation

- We propose to learn the **safe boundary** of **trapped** samples to generate synthetic points with following hypothesis:
 - We define a partial loss l for a synthetic instance s as follows:

$$l = \max\left\{0, 2 - \left[\max_{t' \in T} \phi(t', s) - \max_{m' \in M} \phi(m', s)\right]\right\}$$

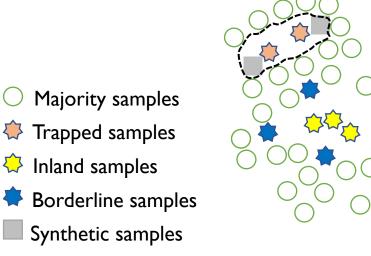
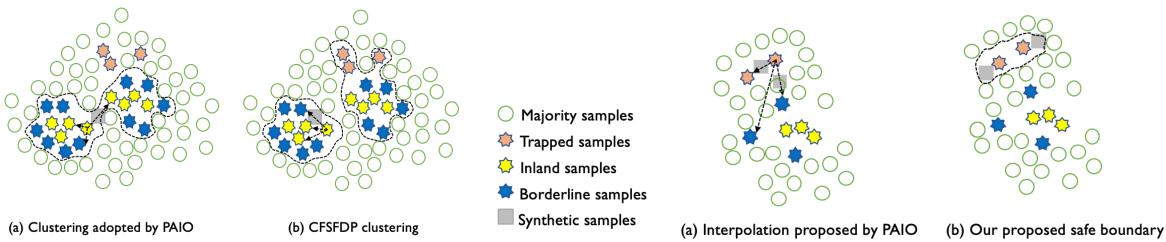


Fig. Our proposed safe boundary

Contribution

- Clustering
 - We employ CFSFDP clustering algorithm to alleviate improper clustering in PAIO.
- Generation
 - We propose to learn the **safe boundary** of **trapped** samples to avoid



1. T. Zhu, Y. Lin, and Y. Liu, "Improving interpolation-based oversampling for imbalanced data learning," Knowledge-Based Systems, 2020.

2. A. Rodriguez and A. Laio, "Clustering by fast search and find of density peaks," Science, 2014.

Background

Literature

Proposed Method

- Motivation
- Formulation
- Experiment
- Future Work

- Data sets:
 - Five classical Imbalanced data sets from UCI repository
- Compared with other nine oversampling algorithms:
 - ROS
 - SMOTE¹ and its variant: safe-SMOTE²
 - MWMO³
 - SMOM⁴
 - INOS⁵
 - MDO⁶
 - RACOG⁷
 - PAIO⁸
- Use two classical classifiers: Linear SVM and C4.5 decision tree

Data sets:

Data	# Min class	# Maj class	# Min examples	# Maj examples	# numeric features	Imbalance ratio
Pima	1	I	268	500	8	1.866
Ecoli	5	3	64	272	7	4.25
Vowel	1	I	90	900	8	10
Yeast	2	8	81	1403	8	17.32
ABI	2	26	99	4078	7	41.19

• Description of inland, borderline and trapped and generated synthetic samples

Data	# I	# B	#T	# S _I	# S _B	# S _T
Pima	135	12	9	135	57	76
Ecoli	43	12	9	69	68	761
Vowel	88	2	0	580	302	0
Yeast	10	14	57	72	180	1012
ABI	0	0	99	0	0	3930

Metrics

- Precision and Recall
 - Precision = TP/(TP+FP)
 - Recall = TP/ (TP+FN)
- FI-score: harmonic mean between precision and recall

• **FI-score** = $\frac{2*precision*recall}{precision+recall}$

• G-mean: balance between the classification performance on both the majority and minority samples

• **G-mean** =
$$\sqrt{\frac{\text{TP}}{TP+FN} * \frac{TN}{TN+FP}}$$

• AUC: area under the receiver operating characteristics curve

• FI-score, G-mean, and AUC values of all the oversampling methods on each numerical imbalanced dataset using **linear-svm**.

Data	Metrics	None	ROS	SMOTE	Safe-SMOTE	MWMO	SMOM	INOS	MDO	RACOG	PAIO	PABIO
	F1-score	0.6253	0.6188	0.6638	0.6609	0.6547	0.6639	0.6527	0.641	0.5339	0.6596	0.6667
pima	G-mean	0.6996	0.7002	0.7384	0.7359	0.731	<u>0.7383</u>	0.7282	0.7193	0.6248	0.7348	0.7070
	AUC	0.8294	0.7676	0.8274	0.8265	0.8202	<u>0.8275</u>	0.8239	0.8264	0.7304	0.8241	0.7500
	F1-score	0.6935	0.7388	0.751	0.7478	0.7262	0.7526	0.7427	0.758	0.5998	0.7434	0.7710
Ecoli	G-mean	0.7724	0.8849	0.8866	0.8778	0.8698	0.8857	0.8811	0.8807	0.7463	0.8855	0.9000
	AUC	0.9392	0.9372	0.9387	0.938	0.9314	<u>0.9392</u>	0.9389	0.9391	0.7929	0.9405	0.9000
	F1-score	0.3106	0.5071	0.5071	0.5066	0.5031	0.5058	0.509	0.4934	0.4937	0.5061	0.5385
vowel	G-mean	0.1805	0.8765	0.8701	0.8646	0.8614	0.8677	0.8677	0.8529	0.8151	0.873	0.9090
	AUC	0.8934	0.9151	0.9127	0.913	0.9116	0.913	0.9124	0.9092	0.8942	0.915	0.9409
	F1-score	0.2532	0.3282	0.3258	0.3801	0.3183	0.3219	0.3439	0.4334	0.3328	0.3337	0.4715
Yeast	G-mean	0.3202	0.8077	0.8029	0.7986	0.8016	0.8002	0.7991	0.75	0.7721	0.8132	0.8320
	AUC	0.7364	0.856	0.8583	0.8597	0.856	<u>0.86</u>	0.8525	0.8588	0.8216	0.8569	0.8920
	F1-score	NaN	0.1608	0.1614	0.2021	0.1599	0.1643	0.1977	0.1778	0.0855	0.1667	0.2286
Abalone	G-mean	0	0.7689	0.766	0.7194	0.7546	0.7607	0.7494	0.712	0.6625	0.7719	0.8035
	AUC	0.6635	0.8764	0.8782	0.8592	0.8645	0.8758	0.8796	0.8701	0.6974	<u>0.8803</u>	0.9006

• FI-score, G-mean, and AUC values of all the oversampling methods on each numerical imbalanced dataset using **C4.5 decision tree**.

Data	Metrics	None	ROS	SMOTE	Safe-SMOTE	MWMO	SMOM	INOS	MDO	RACOG	PAIO	PABIO
	F1-score	0.6061	0.6188	0.6378	0.635	0.6396	0.6407	0.6206	0.6397	0.5562	0.6414	0.6968
pima	G-mean	0.6879	0.7002	0.713	0.7139	0.7166	0.716	0.7021	0.7174	0.6452	0.7157	0.7097
	AUC	0.7619	0.7676	0.7708	<u>0.7728</u>	0.7644	0.7722	0.7632	0.785	0.7071	0.7689	0.7121
	F1-score	0.648	0.6432	0.6847	0.6592	0.6698	0.6879	0.694	0.6657	0.5724	0.6725	0.7539
Ecoli	G-mean	0.7453	0.776	0.8222	0.7925	0.8202	0.8275	0.8286	0.7637	0.7319	0.8239	0.8606
	AUC	0.8745	0.8961	0.9015	0.896	0.8832	0.9052	0.898	0.857	0.8076	0.8952	0.9107
	F1-score	0.7943	0.783	0.7866	0.7934	0.8043	0.794	0.7589	0.7602	0.5113	0.7979	0.8477
vowel	G-mean	0.8681	0.884	0.9061	0.9022	0.901	0.9144	<u>0.9399</u>	0.9333	0.8312	0.9241	0.9763
	AUC	0.9369	0.9487	0.954	0.9541	0.9496	0.9566	0.9687	0.9648	0.9002	0.9615	0.9764
	F1-score	0.3047	0.3552	0.3345	0.359	0.3142	0.3601	0.387	0.3977	0.3021	0.3637	0.4286
Yeast	G-mean	0.4403	0.629	0.6989	0.5956	0.7178	0.7531	0.6949	0.5627	0.8068	0.7296	0.8314
	AUC	0.7504	0.8433	0.833	0.8221	0.8333	0.851	0.8674	0.8125	0.8339	0.8523	0.8926
	F1-score	0.0769	0.0961	0.1331	0.1154	0.1251	0.1333	0.1253	0.1157	0.0833	0.135	0.1753
Abalone	G-mean	0.0045	0.3172	0.5021	0.3054	0.5009	0.5614	0.46	0.0109	0.6508	0.4816	0.7062
	AUC	0.5093	0.7783	0.7832	0.7688	0.7825	0.79	0.7852	0.5742	0.6946	0.787	0.8351

Summary

- In terms of FI-score, our PABIO achieves the best results of all five data sets, either classified by linear SVM or decision tree.
- In terms of **G-mean**, our PABIO outperforms most of the five data sets.
 - Both high precision and recall
- In terms **robustness**:
 - Vowel dataset: <u>no trapped example</u>
 - Our proposed PABIO discovers more dense minority groups, which generates synthetic inland samples safely.
 - Abalone dataset: <u>only has trapped examples</u>
 - Our proposed PABIO learns safe boundary of interpolation, which can expand the minority region effectively and not introduce additional noise points.

Hyperparameters

- To compare our proposed algorithm with PAIO, we adopt the recommended values of the common parameters in it.
 - The number of nearest neighbors m = 8
 - The density threshold to divide minorities $\rho Th = 0.5$
 - The number of majority nearest neighbors to generate synthetic borderline samples $k_{maj} = 0.5$

Hyperparameters

- Our proposed PABIO oversampling depends on the clustering of minorities, thus the cut-off distance: d_c of the clustering algorithm is crucial.
 - The value range of d_c is from 4% to 10%.
- **Findings**: Most of the five datasets have several the same FI-score, as if d_c falls into an appropriate range, it would result in the same clustering result, further, the same FI-score.

Data d _c	Pima	Ecoli	Vowel	Yeast	Abalone
4%	0.6667	0.7107	0.5385	0.4715	0.1544
6%	0.6667	0.7710	0.5385	0.4715	0.1851
8%	0.5991	0.6721	0.5008	0.3003	0.2286
10%	0.5991	0.6721	0.5008	0.3003	0.2286

Table. F1-score of Proposed PAIO Classified By Linear-SVM Varying Cut-off Distance.

Introduction and background

Literatures

Proposed Method

Future Work

- Integrate proposed oversampling e.g. PABIO with data cleaning, additional classifiers, or classifier ensembles etc.
 - The majority class has the main concept of data, may also includes noise examples.
 - Integrate oversampling with the existing under-sampling.
 - Propose cluster-based under-sampling to identify overlapping borderline examples.
- Extend proposed oversampling on **data sets mixed with numerical and** categorical variables.
 - Distance metrics between categorical variables.
 - Interpolate meaningful synthetic categorical variables.
- Evaluate proposed oversampling on biological datasets, which usually have extreme high imbalance ratio, such as 10,000: 1.

Reference

- N.V. Chawla, K.W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: synthetic minority over-sampling technique. J. Artif. Int. Res. (JAIR), 16:321–357, 2002.
- 2. C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap. Safe-level-SMOTE: Safe level synthetic over-sampling technique for handling the class imbalanced problem. In Proc. PAKDD 2009, volume 5476 of Springer LNAI, pages 475–482, 2009.
- 3. S. Barua, M. M. Islam, X. Yao, and K. Murase, "Mwmote–majority weighted minority oversampling technique for imbalanced data set learning," IEEE TKDE, vol. 26, no. 2, pp. 405–425, 2012.
- T. Zhu, Y. Lin, and Y. Liu, "Synthetic minority oversampling technique for multiclass imbalance problems," Pattern Recognition, vol. 72, pp. 327–340, 2017.
- L.Abdi and S. Hashemi, "To combat multi-class imbalanced problems by means of over-sampling techniques," IEEE TKDE, vol. 28, no. 1,pp. 238–251, 2015.
- 6. H. Cao, X.-L. Li, D.Y.-K. Woon, and S.-K. Ng, "Integrated oversampling for imbalanced time series classification," IEEE Transactions on
- Knowledge and Data Engineering, vol. 25, no. 12, pp. 2809–2822, 2013. [34] B. Das, N. C. Krishnan, and D. J. Cook, "Racog and wracog: Two probabilistic oversampling techniques," IEEE transactions on knowledge and data engineering, vol. 27, no. 1, pp. 222–234, 2014.
- T. Zhu, Y. Lin, and Y. Liu, "Improving interpolation-based oversampling for imbalanced data learning," Knowledge-Based Systems, vol. 187, p. 104826, 2020.

Thank you!