

Utilising Visual Attention Cues for Vehicle Detection and Tracking

Feiyan Hu, Venkatesh G M, Noel E. O'Connor, Alan F. Smeaton and Suzanne Little

Insight SFI Research Centre for Data Analytics Dublin City University

Outlines

- Motivation
- Subjective and Objective Attention
- Visual Attention in Detection
- Visual Attention in Tracking
- Conclusion

Motivation

Saliency detection predicts how humans perceive and prioritise visual information.

How can we **use the visual attention cues** efficiently to benefit both detection and tracking in context of Advanced Driver-Assistance Systems (**ADAS**)?

Subjective and Objective Attention

Example of Subjective Attention

generated using ground truth bounding box data.

Example of Objective Attention

Visual Attention in Detection

- Subjective and Objective Map is trained as auxiliary task
- trained together with RPN using same hierarchical representation.

Conv Layer

Conv Layer

Subjectness Map Target

Attention masks used to filter RPs

- Hierarchical features
- Shared representation for subjective, objective attention prediction and object detection.
- SalGAN¹ as saliency teacher.
- Attention cues are used to filter/reduce Region Proposals (RPs).

Pan, Junting, et al. "Salgan: Visual saliency prediction with adversarial networks." CVPR Scene Understanding Workshop (SUNw). 2017.

Visual Attention in Detection

RP: Region Proposals

% of RPs

100%

~4%

~1%

	Trainin	ng			All RPs	ð	Random RPs(OM, SM, All)					
	Testing		OM1	SM1	OM4	SM4	All	OM1	SM1	OM4	SM4	All
Ì	Car	E	90.84	90.84	90.84	90.84	90.84	90.83	90.85	90.83	90.84	90.83
		М	90.63	90.64	90.64	90.64	90.64	90.62	90.65	90.64	90.67	90.65
		Н	88.40	88.91	89.20	89.44	89.25	87.92	88.76	89.23	89.42	89.23
		mAP	81.19	81.26	81.28	81.31	81.27	81.21	81.27	81.27	87.03	81.27
	Dedestrian	E	67.93	68.09	72.76	74.08	73.06	68.32	68.64	73.88	74.95	74.36
		М	57.50	58.28	58.78	61.18	58.78	57.69	58.85	59.39	62.51	59.37
	recestrian	Н	50.08	50.44	50.73	55.41	50.62	50.37	50.80	50.80	55.67	51.22
		mAP	49.48	49.95	50.43	52.93	50.33	49.67	50.50	50.50	54.02	50.83
	% of RPs		0.86%	1.10%	3.43%	4.41%	100%	0.87%	1.11%	3.48%	4.44%	100%
						90. V.	-					100

Results reported on KITTI 2D object detection dataset. **OM** is filtered with Objective Map. **SM** is filtered with Subjective Map.

1 or **4** represents selected top 1 or 4 RPs with highest attention scores.

Visual Attention in Detection

Visual Attention for Tracking

Particle-PHD filter Highlights

- Initialisation: Use of multi-peak Gaussian distribution by a number of particles with randomised weights
- State Prediction and weight computation: based on the weighted IoU, distance metric computed on the temporal histogram. particle with maximum weight is considered as the final state.
- Particle Resampling: based on the motion cues along with Kalman Gain
- Refining and update using visual attention cues: Correction mechanism will guide validated particles in the particle-PHD filter to converge.

SFI RESEARCH CENTRE FOR DATA ANALYTICS

KITTI Sequence : 0000

Why?

Why Visual attention is helpful ?

Width of the target

Multiple Target Tracking on KITTI & DeTRAC Dataset

using subjective hierarchy model with objectness mask

Multiple Target Tracking Accuracy on KITTI Dataset

For Car & Pedestrian with Number of Particles=100, OM: Objectness Map

Class	Method	MOTA	MOTP	Rcll	Prcn	F1	FAR	MT	PT	ML	IDs	FM
Car	Baseline mh-sub-OM	79.13 84.82	80.69 81.88	85.31 90.94	85.31 96.79	90.91 93.77	8.25 10.52	65.43 77.13	29.79 19.86	4.79 3.01	244 268	655 553
Pedestrian	Baseline mh-sub-OM	58.56 64.49	75.05 76.93	65.97 71.81	92.17 92.88	76.90 80.99	7.85 7.70	35.93 48.50	54.49 44.91	9.58 6.59	147 161	547 516

Detection and Tracking Accuracy on DETRAC Dataset

For Car & Pedestrian with Number of Particles=100, SM: Subjective Map, OM: Objectness Map

PERFORMANCE ON DETRAC USING MODEL WITH HIERARCHICAL FEATURES TRAINED WITH ALL REGION PROPOSALS. TESTED WITH ALL AND ATTENTION FILTERED RPS. ALL* IS RESULTS ACHIEVED USING OFFICIAL TESTING DATA AND CODE WITH ALL RPS.

	All	E	M	H	Cloudy	Night	Rainy	Sunny	RPs
All*	71.50	90.23	77.62	57.81	81.39	69.19	58.19	85.55	100%
All	70.98	90.02	79.30	60.00	80.03	70.99	60.69	80.74	100%
OM1	70.98	90.02	79.25	53.12	80.04	70.94	60.64	80.75	1.59%
SM1	70.89	89.84	79.13	59.81	80.04	71.06	60.21	80.73	1.10%
OM4	70.97	90.01	79.22	59.41	80.05	70.79	60.65	80.75	6.36%
SM4	70.86	89.79	79.02	59.56	80.03	70.88	60.21	80.71	4.39%
									\smile

using subjective hierarchy model with objectness mask

Detection

Tracking	Method	PR-MOTA	PR-MOTP	PR-MT	PR-ML	PR-IDs	PR-FRAG	PR-FP	PR-FN
	frcnn+6thAI*	30.7	37.4	28.7	23.2	143.3	1183.1	13387.9	195193.9
	mh-sub-OM	24.85	36.67	28.99	6.59	1583	3054	52286	105165

Conclusion

- Utilisation of visual attention cues can improve the processing efficiency of object detection and performance of tracking module
- Use of knowledge distillation to train a detector that can simultaneously generate objectness and saliency maps using joint image representation
- 10% of the total area of features maps are contributing to the detection of objects. The obtained results shows similar performance is achieved using only with ~1% of RPs by choosing the RPs having highest objectness score from each feature map.
- Modified particle-probability hypothesis density (PHD) filter is explored utilising the visual attention map during **particle resampling**, **distribution and update** process while tracking.

