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» Annotating data manually is Riching laniins
time consuming and expensive train a model > model ﬁ'

* The goal of active learning is {
to automatically select a

number of unlabeled samples labeled

unlabeled set
for an n()ta’[i()n, based on an et oracle (e.g., human annotator)
query function which indicates i
how valuable a sample is for N ¢ o

training the model — . <—query strategy



Related SOTA Work

Learning loss for active learning
(LL4AL):

 Task-agnostic and effective.

 This method learns to predict
the loss of unlabeled input
sample, and uses the predicted

loss as a measure of uncertainty
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Figure from: Yoo, Donggeun, and In So Kweon. "Learning loss for active learning." Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
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The Authors mentioned In thelr paper:

“Perhaps the simplest way to define the loss-prediction loss function is the
mean square error (MSE). However, MSE Is not a suitable choice for this
problem since the scale of the real loss changes (decreases in overall) as
earning of the target model progresses. Minimizing MSE would let the loss
prediction module adapt roughly to the scale changes of the loss, rather than
fitting to the exact value. We have tried to minimize MSE but failed to learn
a good loss prediction module, and active learning with this module actually
demonstrates performance worse than previous methods.”
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However, the learning loss based
active learning problem is
actually a ranking problem. \We

Their solution Is to compare a
pair of samples.

In the mini-batch whose size is B, clarify this aspect in this paper
B/2 data pairs can be made. and demonstrate that the loss
The loss function for a pair is prediction module should be
defined as: trained by minimizing the

ranking error.
Lioes (7, IP) = max (0. 1,1 - (G — 1) + e;)

+1, if [; > [;
st. 1(1;,1) = /
( J) {—1. otherwise
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MSE1=(1+1+1)/3=1
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The proposed active learning algorithm

backpropagation

The improvement:
mini-batch mini-batch mini-batch
 Use the outputs of last block

before the fully-connected E rm |m sround:
layer as the feature j predcte | L | S0 T R
) E target model » e eround- eround-
« Stop the ranking loss . | | dtabel | ruth | ruth

Y

extraction

Feature assifier loss label
gradient to the target model -
and we separate the two

I Osses J mini-batch ranking
. . . i loss prediction module loss
* Use a listwise learning to s
rank (LTR) approach to train ' Tl oar [ Fe P Reo P Fe
backpropagation

the loss prediction module.

no backpropagation




Differentiable Listwise LTR Loss

* The listwise approach is difficult in
the context of deep learning end-to-
end architecures because most of the
metrics are not differentiable.

« A pretrained sorter (e.g. bidirectional
GRU) is used to convert the predicted
losses into predicted ranks. Thus the
ranking loss is differentiable, which is
equivalent to optimize Spearman’s

Rank correlation. (See Engilberge, Martin,

et al. "SoDeep: a Sortlng Deep net to learn
ranking loss surrogates." Proceedings of the
IEEE Conference on Computer Vision and

Pattern Recognition. 2019. )
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Differentiable Listwise LTR Loss

1. The Spearman’s rank correlation [37] is
defined as:

., _ Slrk(s,,) - rk(le,,.) 3
° d(d2 —1)

2. The range of this metric is from -1 to 1.
If the predicted ranks are same as the
ground-truth ranks in every dimension, the
value is 1, otherwise -1. Our aim is to

maximize the Spearman’s rank correlation,

this equals to:

min |rk(le,,) — rk(le,,. )|

3. For a mini-batch with size d, then the
ranking loss of this batch is:

5561, —dZ (rk(ld) = o0 (1))
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Experiment on CIFAR-10

Mean Accuracy (%)
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The comparison of Spearman’s rank correlation on CIFAR-10
Active learning results of CIFAR-10 image classification

L2R-AL Core-set LL4AL Random VAAL Entropy
90.95% 89.47% 90.45% 87.72% 87.11% 90.64%



Experiment on CelebA

CelebA
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Active learning results of CelebA 1mage classification

L2R-AL | Core-set | LL4AL Random @ VAAL Entropy
91.76% 91.02% 91.11% 90.67% 89.29% 92.25%



Experiment on Human Pose Estimation

Human pose estimation
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L2R-AL | Core-set | LL4AL Random Entropy
69.37% | 68.53% 68.27% 67.41% 67.08%



Experiment on Crowd Counting

MAE values
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Labeled Data

L2R-AL | Core-set | LL4AL Random Entropy
10.43 10.98 10.73 11.28 15.04
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 This paper demonstrates that learning loss based active learning algorithm actually
IS a learning to rank problem.

* This paper uses a simple and effective listwise approach to train the loss prediction
module by optimizing the Spearman’s rank correlation metric.

 Validate the proposed approach on two tasks: image classification (CIFAR-10,
CelebA) and regression (MPII, ShanghaiTech Part B). The experimental results
show that the proposed algorithm outperforms recent state-of-the-art active

learning algorithms.

Thanks for you listening



