

End-to-end training of a two-stage neural network for defect detection

Jakob Božič, Domen Tabernik and Danijel Skočaj

University of Ljubljana Faculty of Computer and Information Science, ViCoS

University of Ljubljana

Faculty of Computer and Information Science

ICPR 2020

Industrial quality control

- One of the key processes in manufacturing
 - Classical machine vision methods
 - Transition to deep learning
 - No feature hand-engineering

Decision network

Detection

3/13

sualgnitive vstemslab

Previous work

- Tabernik et al., 2019:
 - Two-stage architecture
 - Two learning phases
 - Cumbersome training process

D. Tabernik et al., Segmentation-based deep-learning approach for surface-defect detection, JIM 2019

Our contributions

- 1. End-to-end learning
 - ⇒ Simultaneous training of both stages
 - ⇒ Gradient flow adjustments
- 2. Supervised learning with coarse annotations
 - ⇒ Coarse pixel-level (i.e., region-level) annotations
 - ⇒ Weighted segmentation loss
- 3. Frequency-of-use sampling
 - \Rightarrow Account for the unbalanced training data
 - → Undersampling with frequency-of-use based probabilities

End-to-end training

- Joint loss: $\mathcal{L}_{total} = \lambda \cdot \mathcal{L}_{seg} + \delta \cdot (1 \lambda) \cdot \mathcal{L}_{cls}$ $\lambda = 1 \frac{n}{total \ epoch}$
- Remove gradient flow from decision stage into segmentation stage

ICPR 2020

Weighted segmentation loss

• Varying uncertainty of presence of defect:

Ground truth

- Greater probability of presence in center of region

 $\Omega(x); p=1$

Higher uncertainty near edges

Input image

$$\Omega(x) = w_{pos} \cdot x^p$$

Frequency-based sampling

- Heavily unbalanced dataset
 - Undersampling of non-defective samples
- Sample negatives with probability inversely proportional to their frequencies of selection
 - Assures all samples are used approximately equal number of times

ICPR 2020

Evaluation

- KolektorSDD
- DAGM
- Severstal Steel Defect dataset

KolektorSDD

Architecture and approach	Learning stages	Number of positive training samples					
11	0 0	33	25	20	15	10	5
Extended Segmentation+Decision Network (ours) Segmentation+Decision Network [9] Cognex ViDi (commercial software) [9]	end-to-end separate (two stages) -	100.00 99.0 99.0	99.78 97.5 97.4	100.00 99.5 95.7	99.88 97.4 97.1	99.31 98.8 95.6	96.71 95.8 89.2
Xu et al. [13] (image-level label only) Pre-trained ResNet [13] (image-level label only)	separate (three stages) -	99.5 97.8	-	-	-	98.0	2

DAGM

a 1	0	urs	Rački et al. [7]		
Surface	TPR	TNR	TPR	TNR	
1	100	100	100	98.8	
2	100	100	100	99.8	
3	100	100	100	96.3	
4	100	100	98.5	99.8	
5	100	100	100	100	
6	100	100	100	100	
7	100	100	100	100	
8	100	100	100	100	
9	100	100	100	99.9	
10	100	100	100	100	

Severstaal steel

	Number of positive training samples					
Metric	3000	1500	750	300		
Average precision (AP)	99.04	99.00	98.91	97.78		
False positives (FP)	34	41	52	95		
False negatives (FN)	54	70	65	77		

DAGM		Kolekt	KolektorSDD		tal Steel	Dynamically	Gradient-flow	Frequency-of-use	Distance	
AP	FP+FN	AP	FP+FN	AP	FP+FN	balanced loss	adjustment	sampling	transform	
90.84	661+45	99.77	0+1	95.90	59+102					
97.60	26+24	99.88	1+0	97.43	76+72	\checkmark				
99.998	1+0	99.90	1+0	97.59	65+61	\checkmark	\checkmark			
100.00	0+0	99.88	1+0	98.24	52+58	\checkmark	\checkmark	\checkmark		
100.00	0+0	100.00	0+0	98.74	59+40	\checkmark	\checkmark	\checkmark	\checkmark	

Conclusion

- Introduced end-to-end training
- Solved KolektorSDD and DAGM
- Extensive ablation study

End-to-end training of a two-stage neural network for defect detection

Jakob Božič, Domen Tabernik and Danijel Skočaj

University of Ljubljana, Faculty of Computer and Information Science Večna pot 113, 1000 Ljubljana

