End-to-end training of a two-stage neural network for defect detection

Jakob Božič, Domen Tabernik and Danijel Skočaj

University of Ljubljana
Faculty of Computer and Information Science, ViCoS

Industrial quality control

- One of the key processes in manufacturing
- Classical machine vision methods
- Transition to deep learning
- No feature hand-engineering

Surface images with a possible defect

Detection of defects with deep learning

- Tabernik et al., 2019:
- Two-stage architecture
- Two learning phases
- Cumbersome training process

D. Tabernik et al., Segmentation-based deep-learning approach for surface-defect detection, JIM 2019

1. End-to-end learning
\Rightarrow Simultaneous training of both stages
\Rightarrow Gradient flow adjustments
2. Supervised learning with coarse annotations
\Rightarrow Coarse pixel-level (i.e., region-level) annotations
\Rightarrow Weighted segmentation loss
3. Frequency-of-use sampling
\Rightarrow Account for the unbalanced training data
\Rightarrow Undersampling with frequency-of-use based probabilities

Input image

$$
\text { Ground truth } \Omega(x) ; p=1
$$

- Joint loss: $\mathcal{L}_{\text {total }}=\lambda \cdot \mathcal{L}_{\text {seg }}+\delta \cdot(1-\lambda) \cdot \mathcal{L}_{\text {cls }}$

$$
\lambda=1-\frac{n}{\text { total_epoch }}
$$

- Remove gradient flow from decision stage into segmentation stage

Weighted segmentation loss

- Varying uncertainty of presence of defect:
- Greater probability of presence in center of region
- Higher uncertainty near edges

$$
\begin{gathered}
\mathcal{L}_{\text {seg }}=\Omega\left(\frac{\mathcal{D}(\text { pix })}{\mathcal{D}\left(\text { pix }_{\text {max }}\right)}\right) \cdot \hat{\mathcal{L}}(\text { pix }) \\
\Omega(x)=w_{\text {pos }} \cdot x^{p}
\end{gathered}
$$

- Heavily unbalanced dataset
- Undersampling of non-defective samples
- Sample negatives with probability inversely proportional to their frequencies of selection
- Assures all samples are used approximately equal number of times

- KolektorSDD
- DAGM
- Severstal Steel Defect dataset

Architecture and approach	Learning stages	Number of positive training samples					
		33	25	20	15	10	5
Extended Segmentation+Decision Network (ours)	end-to-end	100.00	99.78	100.00	99.88	99.31	96.71
Segmentation+Decision Network [9]	separate (two stages)	99.0	97.5	99.5	97.4	98.8	95.8
Cognex ViDi (commercial software) [9]	-	99.0	97.4	95.7	97.1	95.6	89.2
Xu et al. [13] (image-level label only)	separate (three stages)	99.5	-	-	-	98.0	-
Pre-trained ResNet [13] (image-level label only)	-	97.8	-	-	-	-	-

Metric	Number of positive training samples			
	3000	1500	750	300
Average precision $(A P)$	99.04	99.00	98.91	97.78
False positives $(F P)$	34	41	52	95
False negatives $(F N)$	54	70	65	77

DAGM		KolektorSDD		Severstal Steel		Dynamically balanced loss	Gradient-flow adjustment	Frequency-of-use sampling	Distance transform
AP	FP+FN	AP	$\mathrm{FP}+\mathrm{FN}$	AP	FP+FN				
90.84	661+45	99.77	0+1	95.90	59+102				
97.60	$26+24$	99.88	$1+0$	97.43	$76+72$	\checkmark			
99.998	$1+0$	99.90	$1+0$	97.59	65+61	\checkmark	\checkmark		
100.00	0+0	99.88	$1+0$	98.24	52+58	\checkmark	\checkmark	\checkmark	
100.00	$0+0$	100.00	0+0	98.74	$59+40$	\checkmark	\checkmark	\checkmark	\checkmark

Conclusion

- Introduced end-to-end training
- Solved KolektorSDD and DAGM
- Extensive ablation study

End-to-end training of a two-stage neural network for defect detection

Jakob Božič, Domen Tabernik and Danijel Skočaj

