

Translation Resilient Opportunistic WiFi Sensing

Mohammud J. Bocus¹, Wenda Li², Jonas Paulavicius¹, Ryan McConville¹, Raul Santos-Rodriguez¹, Kevin Chetty² and Robert Piechocki¹

¹ Department of Electrical and Electronic Engineering and Computer Science, University of Bristol ² Department of Security and Crime Science, University College London

Track 2: Biometrics, Human Analysis and Behavior Understanding, T2.4, 14th January 2021, 12:30 PM (CET)

25th International Conference on Pattern Recognition (ICPR2020) MiCo Milano Congress Center, ITALY 10 - 15 January 2021

irc-sphere.ac.uk

Outline

- Motivations and Aims
- Key Insights for Human Activity Recognition
- Experiment Setup
- Experiment Results
- Summary and Conclusions

Introduction

- Wi-Fi has experienced rapid growth due to increasing number of wireless devices.
- Wi-Fi systems used for entertainment and accessing information.
- Multiple-Input Multiple-Output (MIMO) technology \rightarrow high data rate.

Motivations

- Physical activity and behaviour patterns to monitor long-term chronic health conditions such as diabetes, dementia, etc.
- We are constantly surrounded by radio-frequency (RF) signals. But what if we could find another purpose for such radio systems?

Aims

- Passive sensing technology where we have a receiver-only radar network that detects the reflections of radio-frequency signals from people.
- Use of RF signals (e.g. Wi-Fi) as a medical radar system for automatic recognition of everyday activities to events which require urgent attention.

Human Activity Recognition

- Video camera
 - Sensitive to lighting conditions
 - Privacy concerns

Wearable Sensors (e.g. accelerometers, gyroscopes, and proximity sensors)
Inconvenient – discomfort for users especially those with skin conditions

Human Activity Recognition

- What do we propose?
 - > Wi-Fi signals for different sensing purposes.
 - Use commodity Wi-Fi devices (No additional infrastructure required)
 - Works in the dark
 - Privacy friendly

CSI Extraction

AEX-AR9590-NX

Atheros

S

Inte

Wi-Fi standards (e.g. 802.11n/ac) based on Orthogonal Frequency Division Multiplexing (**OFDM**).

 \rightarrow provides Channel State Information (**CSI**) which gives information about the wireless channel characteristics between transmitter and receiver.

For a **MIMO-OFDM** system with *p* transmit antennas and *q* receive antennas, the CSI matrix, H_i of each subcarrier, i, is represented as follows:

$$H_{i} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \dots h_{1q} \\ h_{21} & h_{22} & h_{23} \dots h_{2q} \\ \dots & \dots & \dots \\ h_{p1} & h_{p2} & h_{p3} \dots h_{pq} \end{bmatrix}$$

 $b = \frac{1mag}{csi = a + bj}$ $b = \frac{b}{\theta \text{ Phase}}$ a = Real

where h_{pq} is a complex number representing the amplitude and phase between each antenna pair.

Example of CSI signal representation

Experiment Setup

- Evaluate the activity recognition performance in different physical geometry using Wi-Fi CSI → 5 participants performed 6 activities each.
- 9 testing positions separated by 1.5 m (office space 8 m x 6 m)
- 3 layouts

Parameters:

2.4 GHz band 20 MHz bandwidth 1 transmit antenna and 3 receiving antennas 1 kHz packet rate Omni-directional antennas

	Activity	Description			
1	walking	walking along positions 1-2-3, 4-5-6, 7-8-9, 1-4-7,			
		2-5-8 and 3-6-9			
2	sitting	sitting on a chair at positions 2,4,5,6,8			
3	standing	standing from a chair at positions 2,4,5,6,8			
4	laying	laying down on the floor at positions 2,4,5,6,8			
	down				
5	standing	standing from the floor at positions 2,4,5,6,8			
	from				
	floor				
6	picking	picking up objects from the floor at positions			
	up	2,4,5,6,8			

Experiment Setup

Activity Description

Engineering and Physical Sciences

Research Council

Main Signal Processing Steps

- Raw CSI very noisy in nature.
- Discrete Wavelet Transform (DWT) to filter out in-band noise.
- Principal Component Analysis (PCA) for dimensionality reduction.
- Moving variance segmentation to identify starting and ending points of an activity.
- Short Time Fourier Transform (STFT) for time-frequency analysis of each activity.

Example of Layout 2 spectrograms

Experimental Results – 2D CNN for Activity Classification

Experimental Results – Activity Classification Accuracy

CLASSIFICATION PERFORMANCE FOR EACH LAYOUT.

Layout	Precision	Recall	F1-score	Accuracy
1	90.0%	89.5%	89.1%	90.8%
2	73.9%	74.4%	73.8%	75.7%
3	62.6%	61.9%	61.0%	61.5%
1, 2, 3	67.5%	66.3%	66.0%	67.3%

Experimental Results – Position Test Accuracy

- Data from all layouts considered.
- Data is tested for a specific position and trained for all other positions.
- Walking activity excluded.

Summary and Conclusions

- Use of commodity WiFi devices (No additional wireless infrastructure required) for activity recognition in different physical layouts, covering both Line-of-Sight (LoS) and non LoS scenarios.
- Participants performed the activities in a random fashion or different orientations with respect to the transmitter/ receiver (not controlled experiment). This is more representative of the real-world scenario.
- Identify the layout and coverage sensitivities. Results provide a benchmark for the expected accuracy in different physical transmitter-receiver geometry at different positions.
- Best activity classification accuracy (~91%) in LoS setup (Layout 1).
- Centre position achieved the highest accuracy (~73%) in the position test (all layouts combined).
- Activity detection performance is dependent not only on the locations of the TX and RX but also on the positioning of the person performing the activity.

irc-sphere.ac.uk