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Introduction

• Wi-Fi has experienced rapid growth due to increasing number of wireless

devices.

• Wi-Fi systems used for entertainment and accessing information.

• Multiple-Input Multiple-Output (MIMO) technology → high data rate.
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Motivations

• Physical activity and behaviour patterns to monitor long-term chronic health

conditions such as diabetes, dementia, etc.

• We are constantly surrounded by radio-frequency (RF) signals. But what if we

could find another purpose for such radio systems?

➢ Passive sensing technology where we have a receiver-only radar network that

detects the reflections of radio-frequency signals from people.

➢ Use of RF signals (e.g. Wi-Fi) as a medical radar system for automatic recognition

of everyday activities to events which require urgent attention.

Aims



Human Activity Recognition

• Video camera

➢ Sensitive to lighting conditions

➢ Privacy concerns

• Wearable Sensors (e.g. accelerometers, gyroscopes, and proximity sensors)

➢ Inconvenient – discomfort for users especially those with skin conditions
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Human Activity Recognition

• What do we propose?

➢ Wi-Fi signals for different sensing purposes.

➢ Use commodity Wi-Fi devices (No additional infrastructure required)

➢ Works in the dark

➢ Privacy friendly
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CSI Extraction
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Atheros Intel

Wi-Fi standards (e.g. 802.11n/ac) based on

Orthogonal Frequency Division Multiplexing (OFDM).

→provides Channel State Information (CSI) which

gives information about the wireless channel

characteristics between transmitter and receiver.

For a MIMO-OFDM system with transmit antennas

and receive antennas, the CSI matrix, of each

subcarrier, , is represented as follows:

where ℎ𝑝𝑞 is a complex number representing the

amplitude and phase between each antenna pair.
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Example of CSI signal representation
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Experiment Setup
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• Evaluate the activity recognition performance in different physical geometry using

Wi-Fi CSI → 5 participants performed 6 activities each.

• 9 testing positions separated by 1.5 m (office space 8 m x 6 m )

• 3 layouts

Parameters:

2.4 GHz band

20 MHz bandwidth

1 transmit antenna 

and 3 receiving 

antennas

1 kHz packet rate

Omni-directional 

antennas

Experiment Setup Activity Description



Main Signal Processing Steps
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• Raw CSI very noisy in nature.

• Discrete Wavelet Transform (DWT) to filter out in-band noise.

• Principal Component Analysis (PCA) for dimensionality reduction.

• Moving variance segmentation to identify starting and ending points of an activity.

• Short Time Fourier Transform (STFT) for time-frequency analysis of each activity.
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Example of Layout 2 spectrograms
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Experimental Results – 2D CNN for Activity Classification
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Experimental Results –Activity Classification Accuracy
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Experimental Results – Position Test Accuracy
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• Data from all layouts considered.

• Data is tested for a specific position and trained for all other positions.

• Walking activity excluded.



Summary and Conclusions

• Use of commodity WiFi devices (No additional wireless infrastructure required) for activity recognition in

different physical layouts, covering both Line-of-Sight (LoS) and non LoS scenarios.

• Participants performed the activities in a random fashion or different orientations with respect to the

transmitter/ receiver (not controlled experiment). This is more representative of the real-world scenario.

• Identify the layout and coverage sensitivities. Results provide a benchmark for the expected accuracy

in different physical transmitter-receiver geometry at different positions.

• Best activity classification accuracy (~91%) in LoS setup (Layout 1).

• Centre position achieved the highest accuracy (~73%) in the position test (all layouts combined).

• Activity detection performance is dependent not only on the locations of the TX and RX but also on the

positioning of the person performing the activity.
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