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Introduction

« Wi-Fi has experienced rapid g
devices.

« Wi-Fi systems used for entertainment and accessing information.

« Multiple-Input Multiple-Output (MIMO) technology - high data rate.

rowth due to increasing number of wireless
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Motivations

« Physical activity and behaviour patterns to monitor long-term chronic health
conditions such as diabetes, dementia, etc.

* We are constantly surrounded by radio-frequency (RF) signals. But what if we

o A

could find another purpose for such radio systems? &=®
Aims

» Passive sensing technology where we have a receiver-only radar network that
detects the reflections of radio-frequency signals from people.

» Use of RF signals (e.g. Wi-Fi) as a medical radar system for automatic recognition
of everyday activities to events which require urgent attention.
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Human Activity Recognition

* Video camera
» Sensitive to lighting conditions
» Privacy concerns

« Wearable Sensors (e.g. accelerometers, gyroscopes, and proximity sensors)
» Inconvenient — discomfort for users especially those with skin conditions
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Human Activity Recognition

 What do we propose?
» Wi-Fi signals for different sensing purposes.

» Use commodity Wi-Fi devices (No additional infrastructure required)
» Works in the dark

» Privacy friendly
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Wi-Fi  standards (e.g. 802.11n/ac) based on
Orthogonal Frequency Division Multiplexing (OFDM).

—>provides Channel State Information (CSI) which
gives information about the wireless channel
characteristics between transmitter and receiver.

For a MIMO-OFDM system with ptransmit antennas
and qrecelve antennas, the CSI matrix,H, of each
subcarrier, |, is represented as follows:
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where h,, is a complex number representing the
amplitude and phase between each antenna pair.
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Example of CSlI signal representation
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Experiment Setup

« Evaluate the activity recognition performance in different physical geometry using
Wi-Fi CSI - 5 participants performed 6 activities each.

* O testing positions separated by 1.5 m (office space 8 mx 6 m)

« 3 layouts
Activity Description
° o ° I | walking walking along positions 1-2-3, 4-5-6, 7-8-9, 1-4-7,
. 2-5-8 and 3-6-9
Parameters: — — . —
15m 2 4 GHz band 2 | sitting sitting on a chair at positions 2.4,5.6.8
) : 3 | standing | standing from a chair at positions 2,4,5,6,8
m 12m o 1.5m o 1.5m ° 1.5m ' 20 MHz pandWIdth 4 | laying laying down on the floor at positions 2,4,5,6,8
TX (Layout 1) T 1 transmit antenna down
o and 3 receiving 5 | standing | standing from the floor at positions 2.4,5.6,8
o ° 1.5m M antennas from
L 5m T (Layoutsy | 1 kH_z p_acke_:t rate floot
Omni-directional 6 | picking | picking up objects from the floor at positions
MTX(LayoutZ) antennas up 24568
[ Dboor |
Experiment Setup Activity Description




Main Signal Processing Steps
« Raw CSI very noisy in nature.

Discrete Wavelet Transform (DWT) to filter out in-band noise.

Principal Component Analysis (PCA) for dimensionality reduction.

Moving variance segmentation to identify starting and ending points of an activity.

Short Time Fourier Transform (STFT) for time-frequency analysis of each activity.

I Moving ‘
MMHML_»IH}'W%NWW » PCA variance STFT ~ I
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segmentation .
Raw DWT denoising Dimensionality Activity Short-Time |
CSl + median reduction segmentation Fourier
filtering Transform AL
Spectrograms
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Example of Layout 2 spectrograms
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Experimental Results — 2D CNN for Activity Classification
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Experimental Results —Activity Classification Accuracy

CLASSIFICATION PERFORMANCE FOR EACH LAYOUT.

Layout Precision | Recall Fl-score | Accuracy
1 90.0% 89.5% 89.1% 90.8%
2 73.9% 74.4% 73.8% 75.7%
3 62.6% 61.9% 61.0% 61.5%
1,2,3 67.5% 66.3% 66.0% 67.3%
Layout 1 Combined Layouts 1,2,3
Normalized confusion matrix - Normalized confusion matrix
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Experimental Results — Position Test Accuracy

« Data from all layouts considered.
« Data is tested for a specific position and trained for all other positions.

« Walking activity excluded.
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Summary and Conclusions

Use of commodity WiFi devices (No additional wireless infrastructure required) for activity recognition in
different physical layouts, covering both Line-of-Sight (LoS) and non LoS scenarios.

« Participants performed the activities in a random fashion or different orientations with respect to the
transmitter/ receiver (not controlled experiment). This is more representative of the real-world scenario.

« Identify the layout and coverage sensitivities. Results provide a benchmark for the expected accuracy
in different physical transmitter-receiver geometry at different positions.

« Best activity classification accuracy (~91%) in LoS setup (Layout 1).
«  Centre position achieved the highest accuracy (~73%) in the position test (all layouts combined).

«  Activity detection performance is dependent not only on the locations of the TX and RX but also on the
positioning of the person performing the activity.
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