Introduction

Clustering algorithms

Resultats

Other distance

Discussion

Improved Time-Series Clustering with UMAP dimension reduction method

C. Pealat, G. Bouleux, V. Cheutet

University of Lyon - DISP, INSA Lyon - University Hospital of Saint Etienne

2020

Time series clustering

C. Pealat, G. Bouleux,V. Cheutet

Introduction

Clustering algorithms

Resultats

Other distance

Discussion

Clustering : Find groups in unlabelled data

1-D Time series : specific data type

Objective : Determine the efficiency of UMAP as a pre-processing step for clustering algorithm.

Introduction

Clustering algorithms

Resultats

Other distance

Discussion

UMAP : Uniform Manifold Approximation and Projection

- Reduction of dimension algorithm, in general for visualization
- Methodology :

 \hookrightarrow Creation of a fuzzy graph G : Edges between [0,1] with respect to the distance

 \hookrightarrow Reduction of dimension of this graph with Laplacian Eigenmaps G'

 \hookrightarrow Forced directed graph layout to minimized the entropy between G and G'

• What about clustering?

 \hookrightarrow Controversy : It can create pseudo group

 \hookrightarrow Test on real data

Introduction

Clustering algorithms

Resultats

Other distance

Discussion

Creation of a benchmark

- UCR Time Series Classification Archive
- 85 databases of time series with same length, with labels
- Benchmark of clustering results, using v-measure score to compare clustering results and true labels

Introduction

Clustering algorithms

Resultats

Other distance

Discussion

Three Clustering algorithms

• K-means

 \hookrightarrow Centroid-based clustering

 $\hookrightarrow \underline{\text{Needs}}$: Distance, definition of a mean, number of clusters¹

• Hierarchic

 \hookrightarrow Connectivity-based clustering (Dendogram)

 $\hookrightarrow \underline{\text{Needs}} : Distance, number of clusters^1$

• HDBSCAN

 \hookrightarrow Density-based clustering

 $\hookrightarrow \underline{\mathrm{Needs}} : \mathit{Distance}$

^{1.} Determined through silhouette score

Results

<u>C. Pealat</u>, G. Bouleux,V. Cheutet

Introduction

Clustering algorithms

Resultats

Other distance

Discussion

<u>Results summarized :</u>

	Kmeans	Hier.	HDB.	U.+Kmeans	U.+Hier.	U.+HDB.
Mean	0.253	0.212	0.218	0.284	0.273	0.292
Best with U.				61%	66%	75%

 \hookrightarrow With UMAP, improvement of the mean for all 3 algorithms

- \hookrightarrow Improvement for at least 61% of the databases
- \hookrightarrow Particularly efficient with HDBSCAN

And with an other distance?

Introduction

Clustering algorithms

Resultats

Other distance

Discussion

Results on the Stiefel manifold

Methodology new distance :

- ${\small \textcircled{0}}$ Embedding on ${\bf R}^{{\bf n}\times {\bf p}}$ with delay coordinate embedding
- **2** Orthogonalization to obtain an element of $V_{n,p} = \{A \in \mathbb{R}^{n \times p} : A^T A = Id\}$
- New similarity measure : geodesic on the Stiefel manifold (Principal Angle)

4 Karcher mean with respect to the geodesic, allows to apply K-means

	Kmeans	Hier.	HDB.	U.+Kmeans	U.+Hier.	U.+HDB.
Mean	0.203	0.173	0.182	0.292	0.213	0.301
Best with U.				50%	67%	83%

Introduction

Clustering algorithms

Resultats

Other distance

Discussion

What to retain so

- Three clustering algorithms and two distances have been tested
- UMAP increased the v-measure score for all possible combinations
- In particular, UMAP coupled with HDBSCAN gave the best results
- UMAP and HDBSCAN can be still better fitted