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Introduction

Non-linear Generative Mixture Modeling :

e Useful way to model high dimensional data distributions.

e Hasvarious applications in the field of image analysis such as clustering, interpolation or data
generation.

e We propose a novel statistical framework for a DNN-based mixture model (DNN-MM) using a
generator, an encoder and a discriminator.



Introduction

MinMax learning + EM

e Propose anovel data-likelihood term relying on a well regularized/constrained
GMM in the latent space along with a prior term on the DNN weights.

e Propose anovel learning formulation by combining minmax learning with EM-based
learning, termed MinMax+EM, leveraging a variational lower bound that
analytically guarantees tightness to the log-likelihood of the data

e Finally, we extend our model to the semi-supervised setting, where the labels are
available for a fraction of the dataset



Our Approach
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Discriminator modelling: Model a mapping,
D(-;0p) parameterized by DNN weights 6, such
that D(X’:0p)gives the probability of image X’
being drawn from the PDF P(X) of real-world
images.
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Latent space modelling:

Latent-space PDF P(Y ) as a mixture of K
(fixed) Gaussians in latent space
Covariance being the identity matrix |
Mixture weights Wk (learnable)

Let Z be a hidden categorical random
variable indicating the mixture component
to which image X belongs and let Z take
integer values within [1, K]. Thus, the prior
becomes, P(Z = k) = wi, where

K



Our Approach - Probability Modelling

Likelihood for an image X given the prior
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Consistency Prior on Generator + Encoder:

To ensure that Encoder mappings and Generator
mappings are inverses of each other, we propose
a log-prior log P(f0¢,0g) -

Ep)[-IlY — £(G(Y;06); 05)|I3] (5)
K

= Z Wk By, (e, (= 1Yk — E(G(Yi; 06);0E) 3] (6)
k=1

GAN loss terms:
Epx)|—logD(X;0p)| + Ep(y)[logD(Q(Y;()(;):()D)] (7)
= Ep(x)[—log D(X;6p)]

K

+ Z Wk By, N (a1 108 D(G(Yi; 06); 0p) (8)
k=1
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Optimal lower bound on the log-likelihood:

In the E step, we simplify the log-likelihood
through its optimal lower bound as follows.
Consider iteration t, with current parameter
estimates {0%.0%, 0%, w'}. The E step then designs
the function

(0, w; 05, w')

= Epx)Ep(zx 1) log P(X, 2|05, w) (19
K

= Eprx) | Y P(Z =KX, 0,0 log P(X|Z = b, O, *)}
k=1
K

+ Epxy ZPZ k| X, 0%, ") logwy | (11)
k=1
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Final objective function at time step t:

ZZ mA 10 s wi + log (5(;:1;',.,;(}E);/_z,k,l))

min max

b wfc,0E n= lk 1
_)\IZWLZHUL G(yi:0c) ()E)HZ
N
_)‘QZIOgD(ln ()D)
n=1
K S
+/\22wkZlogD(g(yz:()(;):()D). (12)
k=1 s=1

Where 75« represents posterior membership of
data point Z» to the kth cluster based on
parameter estimates at time step t
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Have a small set of images (X, }M_ | with cluster
labels {Z,, € [1, K]}*_, and consider the
membership function for these images to be crisp
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0p w.Oc.Or
M K
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m=1 k=1
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S
+ Ao Z Wi Z log D(G(y1:0c):0p),
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k=1
Here, Z(Z,., k) is the indicator function that takes a
value of 1 when Z,, = kand takes a value of O
otherwise

(13)



Experiments & Results

e Datasets & Metrics:
o MNIST, CIFAR10 (Noisy), CelebA (Noisy)
o Accuracy, ARI, NMI

e Baselines:
o ClusterGANSss:

m Semi-supervised version of ClusterGAN with an additional loss term penalizing the
cross entropy between its encoder-estimated encodings and the true one-hot
encodings for the labelled subset of training set

o DynAEss:
m Semi-supervised version of DynAE with a similar loss term



MNIST Dataset: 5 & 7 classes, 1000 images of each digit

1.00
0.95
0.90]

0.85;

0.80

—}— Our Method
ClusterGANss

—}— DynAEss
0 0.2 0.4 0.6 0.80.99
Level of Supervision a

(al) Accuracy: 5 clusters

curacy

)
<

1.00
0.95;
0.90;
0.85;
0.80;

—}— Our Method
ClusterGANss

—}— DynAEss

0:75

0 02 04 06 0.80.99

Level of Supervision a

(a2) Accuracy: 7 clusters



CIFAR10 & CelebA Dataset: 5 classes, 1000 images of each class
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t-SNE visualizations for latent space PDFs at 0.5 supervision

CIFAR10 (5 classes):
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Conclusion

® Our GMM-based data-likelihood maximizing formulation leads to statistically significantly
better performance than ClusterGANss and DynAEss, especially at smaller levels of
supervision q, indicating improved robustness to noise, for all the datasets.

e Unlike VAE-based methods, our min-max learning increases the data likelihood using a tight
variational lower bound using EM

e Results onthree real-world image datasets demonstrate the benefits of our compact modeling
and learning formulation over the state of the art for nonlinear generative image (mixture)
modeling and image clustering
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